refactor(server): expose Http that implements ServerProto

The main changes are:

* The entry point is how `Http`, the implementation of `ServerProto`.
  This type has a `new` constructor as well as builder methods to
  configure it.

* A high-level entry point of `Http::bind` was added which returns a
  `Server`. Binding a protocol to a port requires a socket address
  (where to bind) as well as the instance of `NewService`. Internally
  this creates a core and a TCP listener.

* The returned `Server` has a few methods to learn about itself, e.g.
  `local_addr` and `handle`, but mainly has two methods: `run` and
  `run_until`.

* The `Server::run` entry point will execute a server infinitely, never
  having it exit.

* The `Server::run_until` method is intended as a graceful shutdown
  mechanism. When the provided future resolves the server stops
  accepting connections immediately and then waits for a fixed period of
  time for all active connections to get torn down, after which the
  whole server is torn down anyway.

* Finally a `Http::bind_connection` method exists as a low-level entry
  point to spawning a server connection. This is used by `Server::run`
  as is intended for external use in other event loops if necessary or
  otherwise low-level needs.

BREAKING CHANGE: `Server` is no longer the pimary entry point. Instead,
  an `Http` type is created  and then either `bind` to receiver a `Server`,
  or it can be passed to other Tokio things.
This commit is contained in:
Alex Crichton
2017-01-18 14:09:20 -08:00
committed by Sean McArthur
parent 39a53fcd33
commit f45e9c8e4f
6 changed files with 395 additions and 281 deletions

View File

@@ -3,13 +3,15 @@
extern crate futures;
extern crate hyper;
extern crate tokio_core;
extern crate pretty_env_logger;
extern crate test;
extern crate tokio_core;
use std::net::SocketAddr;
use futures::{Future, Stream};
use tokio_core::reactor::Core;
use tokio_core::reactor::{Core, Handle};
use tokio_core::net::TcpListener;
use hyper::client;
use hyper::header::{ContentLength, ContentType};
@@ -22,9 +24,7 @@ fn get_one_at_a_time(b: &mut test::Bencher) {
let _ = pretty_env_logger::init();
let mut core = Core::new().unwrap();
let handle = core.handle();
let addr = hyper::Server::http(&"127.0.0.1:0".parse().unwrap(), &handle).unwrap()
.handle(|| Ok(Hello), &handle).unwrap();
let addr = spawn_hello(&handle);
let client = hyper::Client::new(&handle);
@@ -47,9 +47,7 @@ fn post_one_at_a_time(b: &mut test::Bencher) {
let _ = pretty_env_logger::init();
let mut core = Core::new().unwrap();
let handle = core.handle();
let addr = hyper::Server::http(&"127.0.0.1:0".parse().unwrap(), &handle).unwrap()
.handle(|| Ok(Hello), &handle).unwrap();
let addr = spawn_hello(&handle);
let client = hyper::Client::new(&handle);
@@ -92,3 +90,17 @@ impl Service for Hello {
}
}
fn spawn_hello(handle: &Handle) -> SocketAddr {
let addr = "127.0.0.1:0".parse().unwrap();
let listener = TcpListener::bind(&addr, handle).unwrap();
let addr = listener.local_addr().unwrap();
let handle2 = handle.clone();
handle.spawn(listener.incoming().for_each(move |(socket, addr)| {
let http = hyper::server::Http::new();
http.bind_connection(&handle2, socket, addr, Hello);
Ok(())
}).then(|_| Ok(())));
return addr
}

View File

@@ -5,7 +5,7 @@ extern crate pretty_env_logger;
//extern crate num_cpus;
use hyper::header::{ContentLength, ContentType};
use hyper::server::{Server, Service, Request, Response};
use hyper::server::{Http, Service, Request, Response};
static PHRASE: &'static [u8] = b"Hello World!";
@@ -31,9 +31,7 @@ impl Service for Hello {
fn main() {
pretty_env_logger::init().unwrap();
let addr = "127.0.0.1:3000".parse().unwrap();
let _server = Server::standalone(|tokio| {
Server::http(&addr, tokio)?
.handle(|| Ok(Hello), tokio)
}).unwrap();
println!("Listening on http://{}", addr);
let server = Http::new().bind(&addr, || Ok(Hello)).unwrap();
println!("Listening on http://{}", server.local_addr().unwrap());
server.run().unwrap();
}

View File

@@ -7,8 +7,7 @@ extern crate log;
use hyper::{Get, Post, StatusCode};
use hyper::header::ContentLength;
use hyper::server::{Server, Service, Request, Response};
use hyper::server::{Http, Service, Request, Response};
static INDEX: &'static [u8] = b"Try POST /echo";
@@ -48,10 +47,8 @@ impl Service for Echo {
fn main() {
pretty_env_logger::init().unwrap();
let addr = "127.0.0.1:1337".parse().unwrap();
let (listening, server) = Server::standalone(|tokio| {
Server::http(&addr, tokio)?
.handle(|| Ok(Echo), tokio)
}).unwrap();
println!("Listening on http://{}", listening);
server.run();
let server = Http::new().bind(&addr, || Ok(Echo)).unwrap();
println!("Listening on http://{}", server.local_addr().unwrap());
server.run().unwrap();
}

View File

@@ -14,7 +14,7 @@
//! [Server](server/index.html), along with a
//! [typed Headers system](header/index.html).
extern crate futures;
#[macro_use] extern crate futures;
extern crate futures_cpupool;
extern crate httparse;
#[macro_use] extern crate language_tags;

View File

@@ -2,23 +2,26 @@
//!
//! A `Server` is created to listen on a port, parse HTTP requests, and hand
//! them off to a `Service`.
use std::cell::RefCell;
use std::fmt;
use std::io;
use std::net::{SocketAddr, TcpListener as StdTcpListener};
use std::net::SocketAddr;
use std::rc::{Rc, Weak};
use std::time::Duration;
use futures::{Future, Map};
use futures::stream::{Stream};
use futures::sync::oneshot;
use futures::future;
use futures::task::{self, Task};
use futures::{Future, Map, Stream, Poll, Async, Sink, StartSend, AsyncSink};
use tokio::io::Io;
use tokio::reactor::{Core, Handle, Timeout};
use tokio::net::TcpListener;
use tokio::reactor::{Core, Handle};
use tokio_proto::BindServer;
use tokio_proto::streaming::Message;
use tokio_proto::streaming::pipeline::ServerProto;
use tokio_proto::streaming::pipeline::{Transport, Frame, ServerProto};
pub use tokio_service::{NewService, Service};
pub use self::accept::Accept;
pub use self::request::Request;
pub use self::response::Response;
@@ -27,211 +30,125 @@ use http;
mod request;
mod response;
type HttpIncoming = ::tokio::net::Incoming;
/// A Server that can accept incoming network requests.
#[derive(Debug)]
pub struct Server<A> {
accepter: A,
addr: SocketAddr,
/// An instance of the HTTP protocol, and implementation of tokio-proto's
/// `ServerProto` trait.
///
/// This structure is used to create instances of `Server` or to spawn off tasks
/// which handle a connection to an HTTP server. Each instance of `Http` can be
/// configured with various protocol-level options such as keepalive.
#[derive(Debug, Clone)]
pub struct Http {
keep_alive: bool,
//idle_timeout: Option<Duration>,
//max_sockets: usize,
}
impl<A: Accept> Server<A> {
/// Creates a new Server from a Stream of Ios.
///
/// The addr is the socket address the accepter is listening on.
pub fn new(accepter: A, addr: SocketAddr) -> Server<A> {
Server {
accepter: accepter,
addr: addr,
/// An instance of a server created through `Http::bind`.
///
/// This server is intended as a convenience for creating a TCP listener on an
/// address and then serving TCP connections accepted with the service provided.
pub struct Server<S> {
protocol: Http,
new_service: S,
core: Core,
listener: TcpListener,
shutdown_timeout: Duration,
}
impl Http {
/// Creates a new instance of the HTTP protocol, ready to spawn a server or
/// start accepting connections.
pub fn new() -> Http {
Http {
keep_alive: true,
//idle_timeout: Some(Duration::from_secs(75)),
//max_sockets: 4096,
}
}
/// Enables or disables HTTP keep-alive.
///
/// Default is true.
pub fn keep_alive(mut self, val: bool) -> Server<A> {
pub fn keep_alive(&mut self, val: bool) -> &mut Self {
self.keep_alive = val;
self
}
/*
/// Sets how long an idle connection will be kept before closing.
/// Bind the provided `addr` and return a server ready to handle
/// connections.
///
/// Default is 75 seconds.
pub fn idle_timeout(mut self, val: Option<Duration>) -> Server<A> {
self.idle_timeout = val;
self
}
*/
/*
/// Sets the maximum open sockets for this Server.
/// This method will bind the `addr` provided with a new TCP listener ready
/// to accept connections. Each connection will be processed with the
/// `new_service` object provided as well, creating a new service per
/// connection.
///
/// Default is 4096, but most servers can handle much more than this.
pub fn max_sockets(mut self, val: usize) -> Server<A> {
self.max_sockets = val;
self
}
*/
}
impl Server<HttpIncoming> {
/// Creates a new HTTP server config listening on the provided address.
pub fn http(addr: &SocketAddr, handle: &Handle) -> ::Result<Server<HttpIncoming>> {
let listener = try!(StdTcpListener::bind(addr));
let addr = try!(listener.local_addr());
let listener = try!(TcpListener::from_listener(listener, &addr, handle));
Ok(Server::new(listener.incoming(), addr))
}
}
/*
impl<S: SslServer> Server<HttpsListener<S>> {
/// Creates a new server config that will handle `HttpStream`s over SSL.
///
/// You can use any SSL implementation, as long as it implements `hyper::net::Ssl`.
pub fn https(addr: &SocketAddr, ssl: S) -> ::Result<Server<HttpsListener<S>>> {
HttpsListener::new(addr, ssl)
.map(Server::new)
.map_err(From::from)
}
}
*/
impl<A: Accept> Server<A> {
/// Binds to a socket and starts handling connections.
pub fn handle<H>(self, factory: H, handle: &Handle) -> ::Result<SocketAddr>
where H: NewService<Request=Request, Response=Response, Error=::Error> + 'static {
let binder = HttpServer {
keep_alive: self.keep_alive,
};
let inner_handle = handle.clone();
handle.spawn(self.accepter.accept().for_each(move |(socket, remote_addr)| {
let service = HttpService {
inner: try!(factory.new_service()),
remote_addr: remote_addr,
};
binder.bind_server(&inner_handle, socket, service);
Ok(())
}).map_err(|e| {
error!("listener io error: {:?}", e);
()
}));
Ok(self.addr)
}
}
impl Server<()> {
/// Create a server that owns its event loop.
///
/// The returned `ServerLoop` can be used to run the loop forever in the
/// thread. The returned `Listening` can be sent to another thread, and
/// used to shutdown the `ServerLoop`.
pub fn standalone<F>(closure: F) -> ::Result<(Listening, ServerLoop)>
where F: FnOnce(&Handle) -> ::Result<SocketAddr> {
/// The returned `Server` contains one method, `run`, which is used to
/// actually run the server.
pub fn bind<S>(&self, addr: &SocketAddr, new_service: S) -> ::Result<Server<S>>
where S: NewService<Request = Request, Response = Response, Error = ::Error> +
Send + Sync + 'static,
{
let core = try!(Core::new());
let handle = core.handle();
let addr = try!(closure(&handle));
let (shutdown_tx, shutdown_rx) = oneshot::channel();
Ok((
Listening {
addr: addr,
shutdown: shutdown_tx,
},
ServerLoop {
inner: Some((core, shutdown_rx)),
}
))
let listener = try!(TcpListener::bind(addr, &handle));
Ok(Server {
new_service: new_service,
core: core,
listener: listener,
protocol: self.clone(),
shutdown_timeout: Duration::new(1, 0),
})
}
}
/// A configured `Server` ready to run.
pub struct ServerLoop {
inner: Option<(Core, oneshot::Receiver<()>)>,
}
impl fmt::Debug for ServerLoop {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad("ServerLoop")
}
}
impl ServerLoop {
/// Runs the server forever in this loop.
/// Use this `Http` instance to create a new server task which handles the
/// connection `io` provided.
///
/// This will block the current thread.
pub fn run(self) {
// drop will take care of it.
trace!("ServerLoop::run()");
/// This is the low-level method used to actually spawn handling a TCP
/// connection, typically. The `handle` provided is the event loop on which
/// the server task will be spawned, `io` is the I/O object associated with
/// this connection (data that's read/written), `remote_addr` is the remote
/// peer address of the HTTP client, and `service` defines how HTTP requests
/// will be handled (and mapped to responses).
///
/// This method is typically not invoked directly but is rather transitively
/// used through the `serve` helper method above. This can be useful,
/// however, when writing mocks or accepting sockets from a non-TCP
/// location.
pub fn bind_connection<S, I>(&self,
handle: &Handle,
io: I,
remote_addr: SocketAddr,
service: S)
where S: Service<Request = Request, Response = Response, Error = ::Error> + 'static,
I: Io + 'static,
{
self.bind_server(handle, io, HttpService {
inner: service,
remote_addr: remote_addr,
})
}
}
impl Drop for ServerLoop {
fn drop(&mut self) {
self.inner.take().map(|(mut loop_, shutdown)| {
debug!("ServerLoop::drop running");
let _ = loop_.run(shutdown.or_else(|_dropped| ::futures::future::empty::<(), oneshot::Canceled>()));
debug!("Server closed");
});
}
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoRequest(http::RequestHead);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoResponse(ResponseHead);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoTransport<T>(http::Conn<T, http::ServerTransaction>);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct ProtoBindTransport<T> {
inner: future::FutureResult<http::Conn<T, http::ServerTransaction>, io::Error>,
}
/// A handle of the running server.
pub struct Listening {
addr: SocketAddr,
shutdown: ::futures::sync::oneshot::Sender<()>,
}
impl fmt::Debug for Listening {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Listening")
.field("addr", &self.addr)
.finish()
}
}
impl fmt::Display for Listening {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.addr, f)
}
}
impl Listening {
/// The addresses this server is listening on.
pub fn addr(&self) -> &SocketAddr {
&self.addr
}
/// Stop the server from listening to its socket address.
pub fn close(self) {
debug!("closing server {}", self);
self.shutdown.complete(());
}
}
struct HttpServer {
keep_alive: bool,
}
impl<T: Io + 'static> ServerProto<T> for HttpServer {
type Request = http::RequestHead;
impl<T: Io + 'static> ServerProto<T> for Http {
type Request = ProtoRequest;
type RequestBody = http::Chunk;
type Response = ResponseHead;
type Response = ProtoResponse;
type ResponseBody = http::Chunk;
type Error = ::Error;
type Transport = http::Conn<T, http::ServerTransaction>;
type BindTransport = io::Result<http::Conn<T, http::ServerTransaction>>;
type Transport = ProtoTransport<T>;
type BindTransport = ProtoBindTransport<T>;
fn bind_transport(&self, io: T) -> Self::BindTransport {
let ka = if self.keep_alive {
@@ -239,7 +156,83 @@ impl<T: Io + 'static> ServerProto<T> for HttpServer {
} else {
http::KA::Disabled
};
Ok(http::Conn::new(io, ka))
ProtoBindTransport {
inner: future::ok(http::Conn::new(io, ka)),
}
}
}
impl<T: Io + 'static> Sink for ProtoTransport<T> {
type SinkItem = Frame<ProtoResponse, http::Chunk, ::Error>;
type SinkError = io::Error;
fn start_send(&mut self, item: Self::SinkItem)
-> StartSend<Self::SinkItem, io::Error> {
let item = match item {
Frame::Message { message, body } => {
Frame::Message { message: message.0, body: body }
}
Frame::Body { chunk } => Frame::Body { chunk: chunk },
Frame::Error { error } => Frame::Error { error: error },
};
match try!(self.0.start_send(item)) {
AsyncSink::Ready => Ok(AsyncSink::Ready),
AsyncSink::NotReady(Frame::Message { message, body }) => {
Ok(AsyncSink::NotReady(Frame::Message {
message: ProtoResponse(message),
body: body,
}))
}
AsyncSink::NotReady(Frame::Body { chunk }) => {
Ok(AsyncSink::NotReady(Frame::Body { chunk: chunk }))
}
AsyncSink::NotReady(Frame::Error { error }) => {
Ok(AsyncSink::NotReady(Frame::Error { error: error }))
}
}
}
fn poll_complete(&mut self) -> Poll<(), io::Error> {
self.0.poll_complete()
}
}
impl<T: Io + 'static> Stream for ProtoTransport<T> {
type Item = Frame<ProtoRequest, http::Chunk, ::Error>;
type Error = io::Error;
fn poll(&mut self) -> Poll<Option<Self::Item>, io::Error> {
let item = match try_ready!(self.0.poll()) {
Some(item) => item,
None => return Ok(None.into()),
};
let item = match item {
Frame::Message { message, body } => {
Frame::Message { message: ProtoRequest(message), body: body }
}
Frame::Body { chunk } => Frame::Body { chunk: chunk },
Frame::Error { error } => Frame::Error { error: error },
};
Ok(Some(item).into())
}
}
impl<T: Io + 'static> Transport for ProtoTransport<T> {
fn tick(&mut self) {
self.0.tick()
}
fn cancel(&mut self) -> io::Result<()> {
self.0.cancel()
}
}
impl<T: Io + 'static> Future for ProtoBindTransport<T> {
type Item = ProtoTransport<T>;
type Error = io::Error;
fn poll(&mut self) -> Poll<ProtoTransport<T>, io::Error> {
self.inner.poll().map(|a| a.map(ProtoTransport))
}
}
@@ -248,12 +241,12 @@ struct HttpService<T> {
remote_addr: SocketAddr,
}
fn map_response_to_message(res: Response) -> Message<ResponseHead, http::TokioBody> {
fn map_response_to_message(res: Response) -> Message<ProtoResponse, http::TokioBody> {
let (head, body) = response::split(res);
if let Some(body) = body {
Message::WithBody(head, body.into())
Message::WithBody(ProtoResponse(head), body.into())
} else {
Message::WithoutBody(head)
Message::WithoutBody(ProtoResponse(head))
}
}
@@ -262,69 +255,184 @@ type ResponseHead = http::MessageHead<::StatusCode>;
impl<T> Service for HttpService<T>
where T: Service<Request=Request, Response=Response, Error=::Error>,
{
type Request = Message<http::RequestHead, http::TokioBody>;
type Response = Message<ResponseHead, http::TokioBody>;
type Request = Message<ProtoRequest, http::TokioBody>;
type Response = Message<ProtoResponse, http::TokioBody>;
type Error = ::Error;
type Future = Map<T::Future, fn(Response) -> Message<ResponseHead, http::TokioBody>>;
type Future = Map<T::Future, fn(Response) -> Message<ProtoResponse, http::TokioBody>>;
fn call(&self, message: Self::Request) -> Self::Future {
let (head, body) = match message {
Message::WithoutBody(head) => (head, http::Body::empty()),
Message::WithBody(head, body) => (head, body.into()),
Message::WithoutBody(head) => (head.0, http::Body::empty()),
Message::WithBody(head, body) => (head.0, body.into()),
};
let req = request::new(self.remote_addr, head, body);
self.inner.call(req).map(map_response_to_message)
}
}
//private so the `Acceptor` type can stay internal
mod accept {
use std::io;
use std::net::SocketAddr;
use futures::{Stream, Poll};
use tokio::io::Io;
impl<S> Server<S>
where S: NewService<Request = Request, Response = Response, Error = ::Error>
+ Send + Sync + 'static,
{
/// Returns the local address that this server is bound to.
pub fn local_addr(&self) -> ::Result<SocketAddr> {
Ok(try!(self.listener.local_addr()))
}
/// An Acceptor is an incoming Stream of Io.
/// Returns a handle to the underlying event loop that this server will be
/// running on.
pub fn handle(&self) -> Handle {
self.core.handle()
}
/// Configure the amount of time this server will wait for a "graceful
/// shutdown".
///
/// This trait is not implemented directly, and only exists to make the
/// intent clearer. A `Stream<Item=(Io, SocketAddr), Error=io::Error>`
/// should be implemented instead.
pub trait Accept: Stream<Error=io::Error> {
#[doc(hidden)]
type Output: Io + 'static;
#[doc(hidden)]
type Stream: Stream<Item=(Self::Output, SocketAddr), Error=io::Error> + 'static;
#[doc(hidden)]
fn accept(self) -> Accepter<Self::Stream, Self::Output>
where Self: Sized;
/// This is the amount of time after the shutdown signal is received the
/// server will wait for all pending connections to finish. If the timeout
/// elapses then the server will be forcibly shut down.
///
/// This defaults to 1s.
pub fn shutdown_timeout(&mut self, timeout: Duration) -> &mut Self {
self.shutdown_timeout = timeout;
self
}
#[allow(missing_debug_implementations)]
pub struct Accepter<T: Stream<Item=(I, SocketAddr), Error=io::Error> + 'static, I: Io + 'static>(T, ::std::marker::PhantomData<I>);
/// Execute this server infinitely.
///
/// This method does not currently return, but it will return an error if
/// one occurs.
pub fn run(self) -> ::Result<()> {
self.run_until(future::empty())
}
impl<T, I> Stream for Accepter<T, I>
where T: Stream<Item=(I, SocketAddr), Error=io::Error>,
I: Io + 'static,
/// Execute this server until the given future, `shutdown_signal`, resolves.
///
/// This method, like `run` above, is used to execute this HTTP server. The
/// difference with `run`, however, is that this method allows for shutdown
/// in a graceful fashion. The future provided is interpreted as a signal to
/// shut down the server when it resolves.
///
/// This method will block the current thread executing the HTTP server.
/// When the `shutdown_signal` has resolved then the TCP listener will be
/// unbound (dropped). The thread will continue to block for a maximum of
/// `shutdown_timeout` time waiting for active connections to shut down.
/// Once the `shutdown_timeout` elapses or all active connections are
/// cleaned out then this method will return.
pub fn run_until<F>(self, shutdown_signal: F) -> ::Result<()>
where F: Future<Item = (), Error = ::Error>,
{
type Item = T::Item;
type Error = io::Error;
let Server { protocol, new_service, mut core, listener, shutdown_timeout } = self;
let handle = core.handle();
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
self.0.poll()
// Mini future to track the number of active services
let info = Rc::new(RefCell::new(Info {
active: 0,
blocker: None,
}));
// Future for our server's execution
let srv = listener.incoming().for_each(|(socket, addr)| {
let s = NotifyService {
inner: try!(new_service.new_service()),
info: Rc::downgrade(&info),
};
info.borrow_mut().active += 1;
protocol.bind_connection(&handle, socket, addr, s);
Ok(())
});
// Main execution of the server. Here we use `select` to wait for either
// `incoming` or `f` to resolve. We know that `incoming` will never
// resolve with a success (it's infinite) so we're actually just waiting
// for an error or for `f`, our shutdown signal.
//
// When we get a shutdown signal (`Ok`) then we drop the TCP listener to
// stop accepting incoming connections.
match core.run(shutdown_signal.select(srv.map_err(|e| e.into()))) {
Ok(((), _incoming)) => {}
Err((e, _other)) => return Err(e),
}
}
impl<T, I> Accept for T
where T: Stream<Item=(I, SocketAddr), Error=io::Error> + 'static,
I: Io + 'static,
{
type Output = I;
type Stream = T;
fn accept(self) -> Accepter<Self, I> {
Accepter(self, ::std::marker::PhantomData)
// Ok we've stopped accepting new connections at this point, but we want
// to give existing connections a chance to clear themselves out. Wait
// at most `shutdown_timeout` time before we just return clearing
// everything out.
//
// Our custom `WaitUntilZero` will resolve once all services constructed
// here have been destroyed.
let timeout = try!(Timeout::new(shutdown_timeout, &handle));
let wait = WaitUntilZero { info: info.clone() };
match core.run(wait.select(timeout)) {
Ok(_) => Ok(()),
Err((e, _)) => return Err(e.into())
}
}
}
impl<S: fmt::Debug> fmt::Debug for Server<S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Server")
.field("core", &"...")
.field("listener", &self.listener)
.field("new_service", &self.new_service)
.field("protocol", &self.protocol)
.finish()
}
}
struct NotifyService<S> {
inner: S,
info: Weak<RefCell<Info>>,
}
struct WaitUntilZero {
info: Rc<RefCell<Info>>,
}
struct Info {
active: usize,
blocker: Option<Task>,
}
impl<S: Service> Service for NotifyService<S> {
type Request = S::Request;
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn call(&self, message: Self::Request) -> Self::Future {
self.inner.call(message)
}
}
impl<S> Drop for NotifyService<S> {
fn drop(&mut self) {
let info = match self.info.upgrade() {
Some(info) => info,
None => return,
};
let mut info = info.borrow_mut();
info.active -= 1;
if info.active == 0 {
if let Some(task) = info.blocker.take() {
task.unpark();
}
}
}
}
impl Future for WaitUntilZero {
type Item = ();
type Error = io::Error;
fn poll(&mut self) -> Poll<(), io::Error> {
let mut info = self.info.borrow_mut();
if info.active == 0 {
Ok(().into())
} else {
info.blocker = Some(task::park());
Ok(Async::NotReady)
}
}
}

View File

@@ -4,27 +4,29 @@ extern crate futures;
extern crate spmc;
extern crate pretty_env_logger;
use futures::Future;
use futures::stream::Stream;
use futures::{Future, Stream};
use futures::sync::oneshot;
use std::net::{TcpStream, SocketAddr};
use std::io::{Read, Write};
use std::sync::mpsc;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use hyper::server::{Server, Request, Response, Service, NewService};
use hyper::server::{Http, Request, Response, Service, NewService};
struct Serve {
listening: Option<hyper::server::Listening>,
addr: SocketAddr,
msg_rx: mpsc::Receiver<Msg>,
reply_tx: spmc::Sender<Reply>,
spawn_rx: mpsc::Receiver<()>,
shutdown_signal: Option<oneshot::Sender<()>>,
thread: Option<thread::JoinHandle<()>>,
}
impl Serve {
fn addr(&self) -> &SocketAddr {
self.listening.as_ref().unwrap().addr()
&self.addr
}
fn body(&self) -> Vec<u8> {
@@ -66,14 +68,14 @@ impl<'a> ReplyBuilder<'a> {
impl Drop for Serve {
fn drop(&mut self) {
self.listening.take().unwrap().close();
self.spawn_rx.recv().expect("server thread should shutdown cleanly");
drop(self.shutdown_signal.take());
self.thread.take().unwrap().join().unwrap();
}
}
#[derive(Clone)]
struct TestService {
tx: mpsc::Sender<Msg>,
tx: Arc<Mutex<mpsc::Sender<Msg>>>,
reply: spmc::Receiver<Reply>,
_timeout: Option<Duration>,
}
@@ -94,7 +96,7 @@ impl NewService for TestService {
type Request = Request;
type Response = Response;
type Error = hyper::Error;
type Instance = TestService;
fn new_service(&self) -> std::io::Result<TestService> {
@@ -113,7 +115,7 @@ impl Service for TestService {
let tx = self.tx.clone();
let replies = self.reply.clone();
req.body().for_each(move |chunk| {
tx.send(Msg::Chunk(chunk.to_vec())).unwrap();
tx.lock().unwrap().send(Msg::Chunk(chunk.to_vec())).unwrap();
Ok(())
}).map(move |_| {
let mut res = Response::new();
@@ -150,35 +152,32 @@ fn serve() -> Serve {
fn serve_with_timeout(dur: Option<Duration>) -> Serve {
let _ = pretty_env_logger::init();
let (thread_tx, thread_rx) = mpsc::channel();
let (spawn_tx, spawn_rx) = mpsc::channel();
let (addr_tx, addr_rx) = mpsc::channel();
let (msg_tx, msg_rx) = mpsc::channel();
let (reply_tx, reply_rx) = spmc::channel();
let (shutdown_tx, shutdown_rx) = oneshot::channel();
let addr = "127.0.0.1:0".parse().unwrap();
let thread_name = format!("test-server-{:?}", dur);
thread::Builder::new().name(thread_name).spawn(move || {
let (listening, server) = Server::standalone(move |tokio| {
Server::http(&addr, tokio).unwrap()
.handle(TestService {
tx: msg_tx.clone(),
_timeout: dur,
reply: reply_rx,
}, tokio)
let thread = thread::Builder::new().name(thread_name).spawn(move || {
let srv = Http::new().bind(&addr, TestService {
tx: Arc::new(Mutex::new(msg_tx.clone())),
_timeout: dur,
reply: reply_rx,
}).unwrap();
thread_tx.send(listening).unwrap();
server.run();
spawn_tx.send(()).unwrap();
addr_tx.send(srv.local_addr().unwrap()).unwrap();
srv.run_until(shutdown_rx.then(|_| Ok(()))).unwrap();
}).unwrap();
let listening = thread_rx.recv().unwrap();
let addr = addr_rx.recv().unwrap();
Serve {
listening: Some(listening),
msg_rx: msg_rx,
reply_tx: reply_tx,
spawn_rx: spawn_rx,
addr: addr,
shutdown_signal: Some(shutdown_tx),
thread: Some(thread),
}
}