feat(ffi): Initial C API for hyper

This commit is contained in:
Sean McArthur
2021-01-07 17:22:12 -08:00
parent 8861f9a786
commit 3ae1581a53
22 changed files with 2910 additions and 14 deletions

View File

@@ -16,6 +16,7 @@ jobs:
- style
- test
- features
- ffi
- doc
steps:
- run: exit 0
@@ -111,7 +112,53 @@ jobs:
run: cargo install cargo-hack
- name: check --each-feature
run: cargo hack check --each-feature -Z avoid-dev-deps
run: cargo hack check --each-feature --skip ffi -Z avoid-dev-deps
ffi:
name: Test C API (FFI)
needs: [style]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v1
- name: Install Rust
uses: actions-rs/toolchain@v1
with:
profile: minimal
toolchain: stable
override: true
- name: Install cbindgen
uses: actions-rs/cargo@v1
with:
command: install
args: cbindgen
- name: Build FFI
uses: actions-rs/cargo@v1
env:
RUSTFLAGS: --cfg hyper_unstable_ffi
with:
command: build
args: --features client,http1,http2,ffi
# TODO: re-enable check once figuring out how to get it working in CI
# - name: Verify cbindgen
# run: ./capi/gen_header.sh --verify
- name: Make Examples
run: cd capi/examples && make client
- name: Run FFI unit tests
uses: actions-rs/cargo@v1
env:
RUSTFLAGS: --cfg hyper_unstable_ffi
with:
command: test
args: --features full,ffi --lib
doc:
name: Build docs

4
.gitignore vendored
View File

@@ -1,2 +1,2 @@
/target
/Cargo.lock
target
Cargo.lock

View File

@@ -19,6 +19,9 @@ include = [
#"build.rs",
]
[lib]
crate-type = ["lib", "staticlib", "cdylib"]
[dependencies]
bytes = "1"
futures-core = { version = "0.3", default-features = false }
@@ -38,6 +41,7 @@ want = "0.3"
# Optional
libc = { version = "0.2", optional = true }
socket2 = { version = "0.3.16", optional = true }
[dev-dependencies]
@@ -94,7 +98,6 @@ server = []
stream = []
# Tokio support
runtime = [
"tcp",
"tokio/rt",
@@ -106,6 +109,9 @@ tcp = [
"tokio/time",
]
# C-API support (currently unstable (no semver))
ffi = ["libc"]
# internal features used in CI
nightly = []
__internal_happy_eyeballs_tests = []

17
capi/README.md Normal file
View File

@@ -0,0 +1,17 @@
# C API for hyper
This provides auxiliary pieces for a C API to use the hyper library.
## Unstable
The C API of hyper is currently **unstable**, which means it's not part of the semver contract as the rest of the Rust API is.
Because of that, it's only accessible if `--cfg hyper_unstable_ffi` is passed to `rustc` when compiling. The easiest way to do that is setting the `RUSTFLAGS` environment variable.
## Building
The C API is part of the Rust library, but isn't compiled by default. Using `cargo`, it can be compiled with the following command:
```
RUSTFLAGS="--cfg hyper_unstable_ffi" cargo build --features client,http1,http2,ffi
```

14
capi/cbindgen.toml Normal file
View File

@@ -0,0 +1,14 @@
language = "C"
include_guard = "_HYPER_H"
no_includes = true
sys_includes = ["stdint.h", "stddef.h"]
cpp_compat = true
documentation_style = "c"
[parse.expand]
crates = ["hyper-capi"]
[export.rename]
"Exec" = "hyper_executor"
"Io" = "hyper_io"
"Task" = "hyper_task"

22
capi/examples/Makefile Normal file
View File

@@ -0,0 +1,22 @@
#
# Build the example client
#
TARGET = client
OBJS = client.o
RPATH=$(PWD)/../../target/debug
CFLAGS = -I../include
LDFLAGS = -L$(RPATH) -Wl,-rpath,$(RPATH)
LIBS = -lhyper
$(TARGET): $(OBJS)
$(CC) -o $(TARGET) $(OBJS) $(LDFLAGS) $(LIBS)
upload: upload.o
$(CC) -o upload upload.o $(LDFLAGS) $(LIBS)
clean:
rm -f $(OBJS) $(TARGET)
rm -f upload upload.o

343
capi/examples/client.c Normal file
View File

@@ -0,0 +1,343 @@
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/select.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <string.h>
#include "hyper.h"
struct conn_data {
int fd;
hyper_waker *read_waker;
hyper_waker *write_waker;
};
static size_t read_cb(void *userdata, hyper_context *ctx, uint8_t *buf, size_t buf_len) {
struct conn_data *conn = (struct conn_data *)userdata;
ssize_t ret = read(conn->fd, buf, buf_len);
if (ret < 0) {
int err = errno;
if (err == EAGAIN) {
// would block, register interest
if (conn->read_waker != NULL) {
hyper_waker_free(conn->read_waker);
}
conn->read_waker = hyper_context_waker(ctx);
return HYPER_IO_PENDING;
} else {
// kaboom
return HYPER_IO_ERROR;
}
} else {
return ret;
}
}
static size_t write_cb(void *userdata, hyper_context *ctx, const uint8_t *buf, size_t buf_len) {
struct conn_data *conn = (struct conn_data *)userdata;
ssize_t ret = write(conn->fd, buf, buf_len);
if (ret < 0) {
int err = errno;
if (err == EAGAIN) {
// would block, register interest
if (conn->write_waker != NULL) {
hyper_waker_free(conn->write_waker);
}
conn->write_waker = hyper_context_waker(ctx);
return HYPER_IO_PENDING;
} else {
// kaboom
return HYPER_IO_ERROR;
}
} else {
return ret;
}
}
static void free_conn_data(struct conn_data *conn) {
if (conn->read_waker) {
hyper_waker_free(conn->read_waker);
conn->read_waker = NULL;
}
if (conn->write_waker) {
hyper_waker_free(conn->write_waker);
conn->write_waker = NULL;
}
free(conn);
}
static int connect_to(const char *host, const char *port) {
struct addrinfo hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
struct addrinfo *result, *rp;
if (getaddrinfo(host, port, &hints, &result) != 0) {
printf("dns failed for %s\n", host);
return -1;
}
int sfd;
for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (sfd == -1) {
continue;
}
if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1) {
break;
} else {
close(sfd);
}
}
freeaddrinfo(result);
// no address succeeded
if (rp == NULL) {
printf("connect failed for %s\n", host);
return -1;
}
return sfd;
}
static int print_each_header(void *userdata,
const uint8_t *name,
size_t name_len,
const uint8_t *value,
size_t value_len) {
printf("%.*s: %.*s\n", (int) name_len, name, (int) value_len, value);
return HYPER_ITER_CONTINUE;
}
static int print_each_chunk(void *userdata, const hyper_buf *chunk) {
const uint8_t *buf = hyper_buf_bytes(chunk);
size_t len = hyper_buf_len(chunk);
write(1, buf, len);
return HYPER_ITER_CONTINUE;
}
typedef enum {
EXAMPLE_NOT_SET = 0, // tasks we don't know about won't have a userdata set
EXAMPLE_HANDSHAKE,
EXAMPLE_SEND,
EXAMPLE_RESP_BODY
} example_id;
#define STR_ARG(XX) (uint8_t *)XX, strlen(XX)
int main(int argc, char *argv[]) {
const char *host = argc > 1 ? argv[1] : "httpbin.org";
const char *port = argc > 2 ? argv[2] : "80";
const char *path = argc > 3 ? argv[3] : "/";
printf("connecting to port %s on %s...\n", port, host);
int fd = connect_to(host, port);
if (fd < 0) {
return 1;
}
printf("connected to %s, now get %s\n", host, path);
if (fcntl(fd, F_SETFL, O_NONBLOCK) != 0) {
printf("failed to set socket to non-blocking\n");
return 1;
}
fd_set fds_read;
fd_set fds_write;
fd_set fds_excep;
struct conn_data *conn = malloc(sizeof(struct conn_data));
conn->fd = fd;
conn->read_waker = NULL;
conn->write_waker = NULL;
// Hookup the IO
hyper_io *io = hyper_io_new();
hyper_io_set_userdata(io, (void *)conn);
hyper_io_set_read(io, read_cb);
hyper_io_set_write(io, write_cb);
printf("http handshake ...\n");
// We need an executor generally to poll futures
const hyper_executor *exec = hyper_executor_new();
// Prepare client options
hyper_clientconn_options *opts = hyper_clientconn_options_new();
hyper_clientconn_options_exec(opts, exec);
hyper_task *handshake = hyper_clientconn_handshake(io, opts);
hyper_task_set_userdata(handshake, (void *)EXAMPLE_HANDSHAKE);
// Let's wait for the handshake to finish...
hyper_executor_push(exec, handshake);
// In case a task errors...
hyper_error *err;
// The polling state machine!
while (1) {
// Poll all ready tasks and act on them...
while (1) {
hyper_task *task = hyper_executor_poll(exec);
if (!task) {
break;
}
switch ((example_id) hyper_task_userdata(task)) {
case EXAMPLE_HANDSHAKE:
;
if (hyper_task_type(task) == HYPER_TASK_ERROR) {
printf("handshake error!\n");
err = hyper_task_value(task);
goto fail;
}
assert(hyper_task_type(task) == HYPER_TASK_CLIENTCONN);
printf("preparing http request ...\n");
hyper_clientconn *client = hyper_task_value(task);
hyper_task_free(task);
// Prepare the request
hyper_request *req = hyper_request_new();
if (hyper_request_set_method(req, STR_ARG("GET"))) {
printf("error setting method\n");
return 1;
}
if (hyper_request_set_uri(req, STR_ARG(path))) {
printf("error setting uri\n");
return 1;
}
hyper_headers *req_headers = hyper_request_headers(req);
hyper_headers_set(req_headers, STR_ARG("host"), STR_ARG(host));
// Send it!
hyper_task *send = hyper_clientconn_send(client, req);
hyper_task_set_userdata(send, (void *)EXAMPLE_SEND);
printf("sending ...\n");
hyper_executor_push(exec, send);
// For this example, no longer need the client
hyper_clientconn_free(client);
break;
case EXAMPLE_SEND:
;
if (hyper_task_type(task) == HYPER_TASK_ERROR) {
printf("send error!\n");
err = hyper_task_value(task);
goto fail;
}
assert(hyper_task_type(task) == HYPER_TASK_RESPONSE);
// Take the results
hyper_response *resp = hyper_task_value(task);
hyper_task_free(task);
uint16_t http_status = hyper_response_status(resp);
printf("\nResponse Status: %d\n", http_status);
hyper_headers *headers = hyper_response_headers(resp);
hyper_headers_foreach(headers, print_each_header, NULL);
printf("\n");
hyper_body *resp_body = hyper_response_body(resp);
hyper_task *foreach = hyper_body_foreach(resp_body, print_each_chunk, NULL);
hyper_task_set_userdata(foreach, (void *)EXAMPLE_RESP_BODY);
hyper_executor_push(exec, foreach);
// No longer need the response
hyper_response_free(resp);
break;
case EXAMPLE_RESP_BODY:
;
if (hyper_task_type(task) == HYPER_TASK_ERROR) {
printf("body error!\n");
err = hyper_task_value(task);
goto fail;
}
assert(hyper_task_type(task) == HYPER_TASK_EMPTY);
printf("\n -- Done! -- \n");
// Cleaning up before exiting
hyper_task_free(task);
hyper_executor_free(exec);
free_conn_data(conn);
return 0;
case EXAMPLE_NOT_SET:
// A background task for hyper completed...
hyper_task_free(task);
break;
}
}
// All futures are pending on IO work, so select on the fds.
FD_ZERO(&fds_read);
FD_ZERO(&fds_write);
FD_ZERO(&fds_excep);
if (conn->read_waker) {
FD_SET(conn->fd, &fds_read);
}
if (conn->write_waker) {
FD_SET(conn->fd, &fds_write);
}
int sel_ret = select(conn->fd + 1, &fds_read, &fds_write, &fds_excep, NULL);
if (sel_ret < 0) {
printf("select() error\n");
return 1;
} else {
if (FD_ISSET(conn->fd, &fds_read)) {
hyper_waker_wake(conn->read_waker);
conn->read_waker = NULL;
}
if (FD_ISSET(conn->fd, &fds_write)) {
hyper_waker_wake(conn->write_waker);
conn->write_waker = NULL;
}
}
}
return 0;
fail:
if (err) {
printf("error code: %d\n", hyper_error_code(err));
// grab the error details
char errbuf [256];
size_t errlen = hyper_error_print(err, errbuf, sizeof(errbuf));
printf("details: %.*s\n", (int) errlen, errbuf);
// clean up the error
hyper_error_free(err);
}
return 1;
}

386
capi/examples/upload.c Normal file
View File

@@ -0,0 +1,386 @@
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/select.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <string.h>
#include "hyper.h"
struct conn_data {
int fd;
hyper_waker *read_waker;
hyper_waker *write_waker;
};
static size_t read_cb(void *userdata, hyper_context *ctx, uint8_t *buf, size_t buf_len) {
struct conn_data *conn = (struct conn_data *)userdata;
ssize_t ret = read(conn->fd, buf, buf_len);
if (ret < 0) {
int err = errno;
if (err == EAGAIN) {
// would block, register interest
if (conn->read_waker != NULL) {
hyper_waker_free(conn->read_waker);
}
conn->read_waker = hyper_context_waker(ctx);
return HYPER_IO_PENDING;
} else {
// kaboom
return HYPER_IO_ERROR;
}
} else {
return ret;
}
}
static size_t write_cb(void *userdata, hyper_context *ctx, const uint8_t *buf, size_t buf_len) {
struct conn_data *conn = (struct conn_data *)userdata;
ssize_t ret = write(conn->fd, buf, buf_len);
if (ret < 0) {
int err = errno;
if (err == EAGAIN) {
// would block, register interest
if (conn->write_waker != NULL) {
hyper_waker_free(conn->write_waker);
}
conn->write_waker = hyper_context_waker(ctx);
return HYPER_IO_PENDING;
} else {
// kaboom
return HYPER_IO_ERROR;
}
} else {
return ret;
}
}
static void free_conn_data(struct conn_data *conn) {
if (conn->read_waker) {
hyper_waker_free(conn->read_waker);
conn->read_waker = NULL;
}
if (conn->write_waker) {
hyper_waker_free(conn->write_waker);
conn->write_waker = NULL;
}
free(conn);
}
static int connect_to(const char *host, const char *port) {
struct addrinfo hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
struct addrinfo *result, *rp;
if (getaddrinfo(host, port, &hints, &result) != 0) {
printf("dns failed for %s\n", host);
return -1;
}
int sfd;
for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (sfd == -1) {
continue;
}
if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1) {
break;
} else {
close(sfd);
}
}
freeaddrinfo(result);
// no address succeeded
if (rp == NULL) {
printf("connect failed for %s\n", host);
return -1;
}
return sfd;
}
struct upload_body {
int fd;
char *buf;
size_t len;
};
static int poll_req_upload(void *userdata,
hyper_context *ctx,
hyper_buf **chunk) {
struct upload_body* upload = userdata;
ssize_t res = read(upload->fd, upload->buf, upload->len);
if (res < 0) {
printf("error reading upload file: %d", errno);
return HYPER_POLL_ERROR;
} else if (res == 0) {
// All done!
*chunk = NULL;
return HYPER_POLL_READY;
} else {
*chunk = hyper_buf_copy(upload->buf, res);
return HYPER_POLL_READY;
}
}
static int print_each_header(void *userdata,
const uint8_t *name,
size_t name_len,
const uint8_t *value,
size_t value_len) {
printf("%.*s: %.*s\n", (int) name_len, name, (int) value_len, value);
return HYPER_ITER_CONTINUE;
}
typedef enum {
EXAMPLE_NOT_SET = 0, // tasks we don't know about won't have a userdata set
EXAMPLE_HANDSHAKE,
EXAMPLE_SEND,
EXAMPLE_RESP_BODY
} example_id;
#define STR_ARG(XX) (uint8_t *)XX, strlen(XX)
int main(int argc, char *argv[]) {
const char *file = argc > 1 ? argv[1] : NULL;
const char *host = argc > 2 ? argv[2] : "httpbin.org";
const char *port = argc > 3 ? argv[3] : "80";
const char *path = argc > 4 ? argv[4] : "/post";
if (!file) {
printf("Pass a file path as the first argument.\n");
return 1;
}
struct upload_body upload;
upload.fd = open(file, O_RDONLY);
if (upload.fd < 0) {
printf("error opening file to upload: %d", errno);
return 1;
}
printf("connecting to port %s on %s...\n", port, host);
int fd = connect_to(host, port);
if (fd < 0) {
return 1;
}
printf("connected to %s, now upload to %s\n", host, path);
if (fcntl(fd, F_SETFL, O_NONBLOCK) != 0) {
printf("failed to set socket to non-blocking\n");
return 1;
}
upload.len = 8192;
upload.buf = malloc(upload.len);
fd_set fds_read;
fd_set fds_write;
fd_set fds_excep;
struct conn_data *conn = malloc(sizeof(struct conn_data));
conn->fd = fd;
conn->read_waker = NULL;
conn->write_waker = NULL;
// Hookup the IO
hyper_io *io = hyper_io_new();
hyper_io_set_userdata(io, (void *)conn);
hyper_io_set_read(io, read_cb);
hyper_io_set_write(io, write_cb);
printf("http handshake ...\n");
// We need an executor generally to poll futures
const hyper_executor *exec = hyper_executor_new();
// Prepare client options
hyper_clientconn_options *opts = hyper_clientconn_options_new();
hyper_clientconn_options_exec(opts, exec);
hyper_task *handshake = hyper_clientconn_handshake(io, opts);
hyper_task_set_userdata(handshake, (void *)EXAMPLE_HANDSHAKE);
// Let's wait for the handshake to finish...
hyper_executor_push(exec, handshake);
// This body will get filled in eventually...
hyper_body *resp_body = NULL;
// The polling state machine!
while (1) {
// Poll all ready tasks and act on them...
while (1) {
hyper_task *task = hyper_executor_poll(exec);
if (!task) {
break;
}
hyper_task_return_type task_type = hyper_task_type(task);
switch ((example_id) hyper_task_userdata(task)) {
case EXAMPLE_HANDSHAKE:
;
if (task_type == HYPER_TASK_ERROR) {
printf("handshake error!\n");
return 1;
}
assert(task_type == HYPER_TASK_CLIENTCONN);
printf("preparing http request ...\n");
hyper_clientconn *client = hyper_task_value(task);
hyper_task_free(task);
// Prepare the request
hyper_request *req = hyper_request_new();
if (hyper_request_set_method(req, STR_ARG("POST"))) {
printf("error setting method\n");
return 1;
}
if (hyper_request_set_uri(req, STR_ARG(path))) {
printf("error setting uri\n");
return 1;
}
hyper_headers *req_headers = hyper_request_headers(req);
hyper_headers_set(req_headers, STR_ARG("host"), STR_ARG(host));
// Prepare the req body
hyper_body *body = hyper_body_new();
hyper_body_set_userdata(body, &upload);
hyper_body_set_data_func(body, poll_req_upload);
hyper_request_set_body(req, body);
// Send it!
hyper_task *send = hyper_clientconn_send(client, req);
hyper_task_set_userdata(send, (void *)EXAMPLE_SEND);
printf("sending ...\n");
hyper_executor_push(exec, send);
// For this example, no longer need the client
hyper_clientconn_free(client);
break;
case EXAMPLE_SEND:
;
if (task_type == HYPER_TASK_ERROR) {
printf("send error!\n");
return 1;
}
assert(task_type == HYPER_TASK_RESPONSE);
// Take the results
hyper_response *resp = hyper_task_value(task);
hyper_task_free(task);
uint16_t http_status = hyper_response_status(resp);
printf("\nResponse Status: %d\n", http_status);
hyper_headers *headers = hyper_response_headers(resp);
hyper_headers_foreach(headers, print_each_header, NULL);
printf("\n");
resp_body = hyper_response_body(resp);
// Set us up to peel data from the body a chunk at a time
hyper_task *body_data = hyper_body_data(resp_body);
hyper_task_set_userdata(body_data, (void *)EXAMPLE_RESP_BODY);
hyper_executor_push(exec, body_data);
// No longer need the response
hyper_response_free(resp);
break;
case EXAMPLE_RESP_BODY:
;
if (task_type == HYPER_TASK_ERROR) {
printf("body error!\n");
return 1;
}
if (task_type == HYPER_TASK_BUF) {
hyper_buf *chunk = hyper_task_value(task);
write(1, hyper_buf_bytes(chunk), hyper_buf_len(chunk));
hyper_buf_free(chunk);
hyper_task_free(task);
hyper_task *body_data = hyper_body_data(resp_body);
hyper_task_set_userdata(body_data, (void *)EXAMPLE_RESP_BODY);
hyper_executor_push(exec, body_data);
break;
} else {
assert(task_type == HYPER_TASK_EMPTY);
hyper_task_free(task);
hyper_body_free(resp_body);
printf("\n -- Done! -- \n");
// Cleaning up before exiting
hyper_executor_free(exec);
free_conn_data(conn);
free(upload.buf);
return 0;
}
case EXAMPLE_NOT_SET:
// A background task for hyper completed...
hyper_task_free(task);
break;
}
}
// All futures are pending on IO work, so select on the fds.
FD_ZERO(&fds_read);
FD_ZERO(&fds_write);
FD_ZERO(&fds_excep);
if (conn->read_waker) {
FD_SET(conn->fd, &fds_read);
}
if (conn->write_waker) {
FD_SET(conn->fd, &fds_write);
}
int sel_ret = select(conn->fd + 1, &fds_read, &fds_write, &fds_excep, NULL);
if (sel_ret < 0) {
printf("select() error\n");
return 1;
} else {
if (FD_ISSET(conn->fd, &fds_read)) {
hyper_waker_wake(conn->read_waker);
conn->read_waker = NULL;
}
if (FD_ISSET(conn->fd, &fds_write)) {
hyper_waker_wake(conn->write_waker);
conn->write_waker = NULL;
}
}
}
return 0;
}

72
capi/gen_header.sh Executable file
View File

@@ -0,0 +1,72 @@
#!/usr/bin/env bash
CAPI_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
WORK_DIR=`mktemp -d`
# check if tmp dir was created
if [[ ! "$WORK_DIR" || ! -d "$WORK_DIR" ]]; then
echo "Could not create temp dir"
exit 1
fi
header_file_backup="$CAPI_DIR/include/hyper.h.backup"
function cleanup {
#echo "$WORK_DIR"
rm -rf "$WORK_DIR"
rm "$header_file_backup"
}
trap cleanup EXIT
mkdir "$WORK_DIR/src"
# Fake a library
cat > "$WORK_DIR/src/lib.rs" << EOF
#[path = "$CAPI_DIR/../src/ffi/mod.rs"]
pub mod ffi;
EOF
# And its Cargo.toml
cat > "$WORK_DIR/Cargo.toml" << EOF
[package]
name = "hyper"
version = "0.0.0"
edition = "2018"
publish = false
[dependencies]
EOF
cp "$CAPI_DIR/include/hyper.h" "$header_file_backup"
#cargo metadata --no-default-features --features ffi --format-version 1 > "$WORK_DIR/metadata.json"
cd $WORK_DIR
# Expand just the ffi module
cargo rustc -- -Z unstable-options --pretty=expanded > expanded.rs 2>/dev/null
# Replace the previous copy with the single expanded file
rm -rf ./src
mkdir src
mv expanded.rs src/lib.rs
# Bindgen!
cbindgen\
-c "$CAPI_DIR/cbindgen.toml"\
--lockfile "$CAPI_DIR/../Cargo.lock"\
-o "$CAPI_DIR/include/hyper.h"\
$1
bindgen_exit_code=$?
if [[ "--verify" == "$1" && "$bindgen_exit_code" != 0 ]]; then
echo "diff generated (<) vs backup (>)"
diff "$CAPI_DIR/include/hyper.h" "$header_file_backup"
fi
exit $bindgen_exit_code

554
capi/include/hyper.h Normal file
View File

@@ -0,0 +1,554 @@
#ifndef _HYPER_H
#define _HYPER_H
#include <stdint.h>
#include <stddef.h>
#define HYPER_ITER_CONTINUE 0
#define HYPER_ITER_BREAK 1
#define HYPER_HTTP_VERSION_NONE 0
#define HYPER_HTTP_VERSION_1_0 10
#define HYPER_HTTP_VERSION_1_1 11
#define HYPER_HTTP_VERSION_2 20
#define HYPER_IO_PENDING 4294967295
#define HYPER_IO_ERROR 4294967294
#define HYPER_POLL_READY 0
#define HYPER_POLL_PENDING 1
#define HYPER_POLL_ERROR 3
typedef enum {
/*
All is well.
*/
HYPERE_OK,
/*
General error, details in the `hyper_error *`.
*/
HYPERE_ERROR,
/*
A function argument was invalid.
*/
HYPERE_INVALID_ARG,
/*
The IO transport returned an EOF when one wasn't expected.
This typically means an HTTP request or response was expected, but the
connection closed cleanly without sending (all of) it.
*/
HYPERE_UNEXPECTED_EOF,
/*
Aborted by a user supplied callback.
*/
HYPERE_ABORTED_BY_CALLBACK,
/*
An optional hyper feature was not enabled.
*/
HYPERE_FEATURE_NOT_ENABLED,
} hyper_code;
typedef enum {
/*
The value of this task is null (does not imply an error).
*/
HYPER_TASK_EMPTY,
/*
The value of this task is `hyper_error *`.
*/
HYPER_TASK_ERROR,
/*
The value of this task is `hyper_clientconn *`.
*/
HYPER_TASK_CLIENTCONN,
/*
The value of this task is `hyper_response *`.
*/
HYPER_TASK_RESPONSE,
/*
The value of this task is `hyper_buf *`.
*/
HYPER_TASK_BUF,
} hyper_task_return_type;
typedef struct hyper_executor hyper_executor;
typedef struct hyper_io hyper_io;
typedef struct hyper_task hyper_task;
typedef struct hyper_body hyper_body;
typedef struct hyper_buf hyper_buf;
typedef struct hyper_clientconn hyper_clientconn;
typedef struct hyper_clientconn_options hyper_clientconn_options;
typedef struct hyper_context hyper_context;
typedef struct hyper_error hyper_error;
typedef struct hyper_headers hyper_headers;
typedef struct hyper_request hyper_request;
typedef struct hyper_response hyper_response;
typedef struct hyper_waker hyper_waker;
typedef int (*hyper_body_foreach_callback)(void*, const hyper_buf*);
typedef int (*hyper_body_data_callback)(void*, hyper_context*, hyper_buf**);
typedef int (*hyper_headers_foreach_callback)(void*, const uint8_t*, size_t, const uint8_t*, size_t);
typedef size_t (*hyper_io_read_callback)(void*, hyper_context*, uint8_t*, size_t);
typedef size_t (*hyper_io_write_callback)(void*, hyper_context*, const uint8_t*, size_t);
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
/*
Returns a static ASCII (null terminated) string of the hyper version.
*/
const char *hyper_version(void);
/*
Create a new "empty" body.
If not configured, this body acts as an empty payload.
*/
hyper_body *hyper_body_new(void);
/*
Free a `hyper_body *`.
*/
void hyper_body_free(hyper_body *body);
/*
Return a task that will poll the body for the next buffer of data.
The task value may have different types depending on the outcome:
- `HYPER_TASK_BUF`: Success, and more data was received.
- `HYPER_TASK_ERROR`: An error retrieving the data.
- `HYPER_TASK_EMPTY`: The body has finished streaming data.
This does not consume the `hyper_body *`, so it may be used to again.
However, it MUST NOT be used or freed until the related task completes.
*/
hyper_task *hyper_body_data(hyper_body *body);
/*
Return a task that will poll the body and execute the callback with each
body chunk that is received.
The `hyper_buf` pointer is only a borrowed reference, it cannot live outside
the execution of the callback. You must make a copy to retain it.
The callback should return `HYPER_ITER_CONTINUE` to continue iterating
chunks as they are received, or `HYPER_ITER_BREAK` to cancel.
This will consume the `hyper_body *`, you shouldn't use it anymore or free it.
*/
hyper_task *hyper_body_foreach(hyper_body *body, hyper_body_foreach_callback func, void *userdata);
/*
Set userdata on this body, which will be passed to callback functions.
*/
void hyper_body_set_userdata(hyper_body *body, void *userdata);
/*
Set the data callback for this body.
The callback is called each time hyper needs to send more data for the
body. It is passed the value from `hyper_body_set_userdata`.
If there is data available, the `hyper_buf **` argument should be set
to a `hyper_buf *` containing the data, and `HYPER_POLL_READY` should
be returned.
Returning `HYPER_POLL_READY` while the `hyper_buf **` argument points
to `NULL` will indicate the body has completed all data.
If there is more data to send, but it isn't yet available, a
`hyper_waker` should be saved from the `hyper_context *` argument, and
`HYPER_POLL_PENDING` should be returned. You must wake the saved waker
to signal the task when data is available.
If some error has occurred, you can return `HYPER_POLL_ERROR` to abort
the body.
*/
void hyper_body_set_data_func(hyper_body *body, hyper_body_data_callback func);
/*
Create a new `hyper_buf *` by copying the provided bytes.
This makes an owned copy of the bytes, so the `buf` argument can be
freed or changed afterwards.
*/
hyper_buf *hyper_buf_copy(const uint8_t *buf, size_t len);
/*
Get a pointer to the bytes in this buffer.
This should be used in conjunction with `hyper_buf_len` to get the length
of the bytes data.
This pointer is borrowed data, and not valid once the `hyper_buf` is
consumed/freed.
*/
const uint8_t *hyper_buf_bytes(const hyper_buf *buf);
/*
Get the length of the bytes this buffer contains.
*/
size_t hyper_buf_len(const hyper_buf *buf);
/*
Free this buffer.
*/
void hyper_buf_free(hyper_buf *buf);
/*
Starts an HTTP client connection handshake using the provided IO transport
and options.
Both the `io` and the `options` are consumed in this function call.
The returned `hyper_task *` must be polled with an executor until the
handshake completes, at which point the value can be taken.
*/
hyper_task *hyper_clientconn_handshake(hyper_io *io, hyper_clientconn_options *options);
/*
Send a request on the client connection.
Returns a task that needs to be polled until it is ready. When ready, the
task yields a `hyper_response *`.
*/
hyper_task *hyper_clientconn_send(hyper_clientconn *conn, hyper_request *req);
/*
Free a `hyper_clientconn *`.
*/
void hyper_clientconn_free(hyper_clientconn *conn);
/*
Creates a new set of HTTP clientconn options to be used in a handshake.
*/
hyper_clientconn_options *hyper_clientconn_options_new(void);
/*
Free a `hyper_clientconn_options *`.
*/
void hyper_clientconn_options_free(hyper_clientconn_options *opts);
/*
Set the client background task executor.
This does not consume the `options` or the `exec`.
*/
void hyper_clientconn_options_exec(hyper_clientconn_options *opts, const hyper_executor *exec);
/*
Set the whether to use HTTP2.
Pass `0` to disable, `1` to enable.
*/
hyper_code hyper_clientconn_options_http2(hyper_clientconn_options *opts, int enabled);
/*
Frees a `hyper_error`.
*/
void hyper_error_free(hyper_error *err);
/*
Get an equivalent `hyper_code` from this error.
*/
hyper_code hyper_error_code(const hyper_error *err);
/*
Print the details of this error to a buffer.
The `dst_len` value must be the maximum length that the buffer can
store.
The return value is number of bytes that were written to `dst`.
*/
size_t hyper_error_print(const hyper_error *err, uint8_t *dst, size_t dst_len);
/*
Construct a new HTTP request.
*/
hyper_request *hyper_request_new(void);
/*
Free an HTTP request if not going to send it on a client.
*/
void hyper_request_free(hyper_request *req);
/*
Set the HTTP Method of the request.
*/
hyper_code hyper_request_set_method(hyper_request *req, const uint8_t *method, size_t method_len);
/*
Set the URI of the request.
*/
hyper_code hyper_request_set_uri(hyper_request *req, const uint8_t *uri, size_t uri_len);
/*
Set the preferred HTTP version of the request.
The version value should be one of the `HYPER_HTTP_VERSION_` constants.
Note that this won't change the major HTTP version of the connection,
since that is determined at the handshake step.
*/
hyper_code hyper_request_set_version(hyper_request *req, int version);
/*
Gets a reference to the HTTP headers of this request
This is not an owned reference, so it should not be accessed after the
`hyper_request` has been consumed.
*/
hyper_headers *hyper_request_headers(hyper_request *req);
/*
Set the body of the request.
The default is an empty body.
This takes ownership of the `hyper_body *`, you must not use it or
free it after setting it on the request.
*/
hyper_code hyper_request_set_body(hyper_request *req, hyper_body *body);
/*
Free an HTTP response after using it.
*/
void hyper_response_free(hyper_response *resp);
/*
Get the HTTP-Status code of this response.
It will always be within the range of 100-599.
*/
uint16_t hyper_response_status(const hyper_response *resp);
/*
Get the HTTP version used by this response.
The returned value could be:
- `HYPER_HTTP_VERSION_1_0`
- `HYPER_HTTP_VERSION_1_1`
- `HYPER_HTTP_VERSION_2`
- `HYPER_HTTP_VERSION_NONE` if newer (or older).
*/
int hyper_response_version(const hyper_response *resp);
/*
Gets a reference to the HTTP headers of this response.
This is not an owned reference, so it should not be accessed after the
`hyper_response` has been freed.
*/
hyper_headers *hyper_response_headers(hyper_response *resp);
/*
Take ownership of the body of this response.
It is safe to free the response even after taking ownership of its body.
*/
hyper_body *hyper_response_body(hyper_response *resp);
/*
Iterates the headers passing each name and value pair to the callback.
The `userdata` pointer is also passed to the callback.
The callback should return `HYPER_ITER_CONTINUE` to keep iterating, or
`HYPER_ITER_BREAK` to stop.
*/
void hyper_headers_foreach(const hyper_headers *headers,
hyper_headers_foreach_callback func,
void *userdata);
/*
Sets the header with the provided name to the provided value.
This overwrites any previous value set for the header.
*/
hyper_code hyper_headers_set(hyper_headers *headers,
const uint8_t *name,
size_t name_len,
const uint8_t *value,
size_t value_len);
/*
Adds the provided value to the list of the provided name.
If there were already existing values for the name, this will append the
new value to the internal list.
*/
hyper_code hyper_headers_add(hyper_headers *headers,
const uint8_t *name,
size_t name_len,
const uint8_t *value,
size_t value_len);
/*
Create a new IO type used to represent a transport.
The read and write functions of this transport should be set with
`hyper_io_set_read` and `hyper_io_set_write`.
*/
hyper_io *hyper_io_new(void);
/*
Free an unused `hyper_io *`.
This is typically only useful if you aren't going to pass ownership
of the IO handle to hyper, such as with `hyper_clientconn_handshake()`.
*/
void hyper_io_free(hyper_io *io);
/*
Set the user data pointer for this IO to some value.
This value is passed as an argument to the read and write callbacks.
*/
void hyper_io_set_userdata(hyper_io *io, void *data);
/*
Set the read function for this IO transport.
Data that is read from the transport should be put in the `buf` pointer,
up to `buf_len` bytes. The number of bytes read should be the return value.
It is undefined behavior to try to access the bytes in the `buf` pointer,
unless you have already written them yourself. It is also undefined behavior
to return that more bytes have been written than actually set on the `buf`.
If there is no data currently available, a waker should be claimed from
the `ctx` and registered with whatever polling mechanism is used to signal
when data is available later on. The return value should be
`HYPER_IO_PENDING`.
If there is an irrecoverable error reading data, then `HYPER_IO_ERROR`
should be the return value.
*/
void hyper_io_set_read(hyper_io *io, hyper_io_read_callback func);
/*
Set the write function for this IO transport.
Data from the `buf` pointer should be written to the transport, up to
`buf_len` bytes. The number of bytes written should be the return value.
If no data can currently be written, the `waker` should be cloned and
registered with whatever polling mechanism is used to signal when data
is available later on. The return value should be `HYPER_IO_PENDING`.
Yeet.
If there is an irrecoverable error reading data, then `HYPER_IO_ERROR`
should be the return value.
*/
void hyper_io_set_write(hyper_io *io, hyper_io_write_callback func);
/*
Creates a new task executor.
*/
const hyper_executor *hyper_executor_new(void);
/*
Frees an executor and any incomplete tasks still part of it.
*/
void hyper_executor_free(const hyper_executor *exec);
/*
Push a task onto the executor.
The executor takes ownership of the task, it should not be accessed
again unless returned back to the user with `hyper_executor_poll`.
*/
hyper_code hyper_executor_push(const hyper_executor *exec, hyper_task *task);
/*
Polls the executor, trying to make progress on any tasks that have notified
that they are ready again.
If ready, returns a task from the executor that has completed.
If there are no ready tasks, this returns `NULL`.
*/
hyper_task *hyper_executor_poll(const hyper_executor *exec);
/*
Free a task.
*/
void hyper_task_free(hyper_task *task);
/*
Takes the output value of this task.
This must only be called once polling the task on an executor has finished
this task.
Use `hyper_task_type` to determine the type of the `void *` return value.
*/
void *hyper_task_value(hyper_task *task);
/*
Query the return type of this task.
*/
hyper_task_return_type hyper_task_type(hyper_task *task);
/*
Set a user data pointer to be associated with this task.
This value will be passed to task callbacks, and can be checked later
with `hyper_task_userdata`.
*/
void hyper_task_set_userdata(hyper_task *task, void *userdata);
/*
Retrieve the userdata that has been set via `hyper_task_set_userdata`.
*/
void *hyper_task_userdata(hyper_task *task);
/*
Copies a waker out of the task context.
*/
hyper_waker *hyper_context_waker(hyper_context *cx);
/*
Free a waker that hasn't been woken.
*/
void hyper_waker_free(hyper_waker *waker);
/*
Free a waker that hasn't been woken.
*/
void hyper_waker_wake(hyper_waker *waker);
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus
#endif /* _HYPER_H */

View File

@@ -51,6 +51,8 @@ enum Kind {
content_length: DecodedLength,
recv: h2::RecvStream,
},
#[cfg(feature = "ffi")]
Ffi(crate::ffi::UserBody),
#[cfg(feature = "stream")]
Wrapped(
SyncWrapper<
@@ -260,6 +262,21 @@ impl Body {
}
}
#[cfg(feature = "ffi")]
pub(crate) fn as_ffi_mut(&mut self) -> &mut crate::ffi::UserBody {
match self.kind {
Kind::Ffi(ref mut body) => return body,
_ => {
self.kind = Kind::Ffi(crate::ffi::UserBody::new());
}
}
match self.kind {
Kind::Ffi(ref mut body) => body,
_ => unreachable!(),
}
}
fn poll_inner(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<crate::Result<Bytes>>> {
match self.kind {
Kind::Once(ref mut val) => Poll::Ready(val.take().map(Ok)),
@@ -294,6 +311,9 @@ impl Body {
None => Poll::Ready(None),
},
#[cfg(feature = "ffi")]
Kind::Ffi(ref mut body) => body.poll_data(cx),
#[cfg(feature = "stream")]
Kind::Wrapped(ref mut s) => match ready!(s.get_mut().as_mut().poll_next(cx)) {
Some(res) => Poll::Ready(Some(res.map_err(crate::Error::new_body))),
@@ -348,6 +368,10 @@ impl HttpBody for Body {
}
Err(e) => Poll::Ready(Err(crate::Error::new_h2(e))),
},
#[cfg(feature = "ffi")]
Kind::Ffi(ref mut body) => body.poll_trailers(cx),
_ => Poll::Ready(Ok(None)),
}
}
@@ -358,6 +382,8 @@ impl HttpBody for Body {
Kind::Chan { content_length, .. } => content_length == DecodedLength::ZERO,
#[cfg(all(feature = "http2", any(feature = "client", feature = "server")))]
Kind::H2 { recv: ref h2, .. } => h2.is_end_stream(),
#[cfg(feature = "ffi")]
Kind::Ffi(..) => false,
#[cfg(feature = "stream")]
Kind::Wrapped(..) => false,
}
@@ -384,6 +410,8 @@ impl HttpBody for Body {
Kind::Chan { content_length, .. } => opt_len!(content_length),
#[cfg(all(feature = "http2", any(feature = "client", feature = "server")))]
Kind::H2 { content_length, .. } => opt_len!(content_length),
#[cfg(feature = "ffi")]
Kind::Ffi(..) => SizeHint::default(),
}
}
}

View File

@@ -116,6 +116,10 @@ pub(crate) enum User {
/// User polled for an upgrade, but low-level API is not using upgrades.
#[cfg(feature = "http1")]
ManualUpgrade,
/// User aborted in an FFI callback.
#[cfg(feature = "ffi")]
AbortedByCallback,
}
// Sentinel type to indicate the error was caused by a timeout.
@@ -179,8 +183,7 @@ impl Error {
self
}
#[cfg(feature = "http1")]
#[cfg(feature = "server")]
#[cfg(any(all(feature = "http1", feature = "server"), feature = "ffi"))]
pub(crate) fn kind(&self) -> &Kind {
&self.inner.kind
}
@@ -336,6 +339,11 @@ impl Error {
Error::new(Kind::Shutdown).with(cause)
}
#[cfg(feature = "ffi")]
pub(crate) fn new_user_aborted_by_callback() -> Error {
Error::new_user(User::AbortedByCallback)
}
#[cfg(feature = "http2")]
pub(crate) fn new_h2(cause: ::h2::Error) -> Error {
if cause.is_io() {
@@ -406,6 +414,8 @@ impl Error {
Kind::User(User::NoUpgrade) => "no upgrade available",
#[cfg(feature = "http1")]
Kind::User(User::ManualUpgrade) => "upgrade expected but low level API in use",
#[cfg(feature = "ffi")]
Kind::User(User::AbortedByCallback) => "operation aborted by an application callback",
}
}
}

233
src/ffi/body.rs Normal file
View File

@@ -0,0 +1,233 @@
use std::ffi::c_void;
use std::mem::ManuallyDrop;
use std::ptr;
use std::task::{Context, Poll};
use http::HeaderMap;
use libc::{c_int, size_t};
use super::task::{hyper_context, hyper_task_return_type, AsTaskType, Task};
use super::{UserDataPointer, HYPER_ITER_CONTINUE};
use crate::body::{Body, Bytes, HttpBody as _};
pub struct hyper_body(pub(super) Body);
pub struct hyper_buf(pub(super) Bytes);
pub(crate) struct UserBody {
data_func: hyper_body_data_callback,
userdata: *mut c_void,
}
// ===== Body =====
type hyper_body_foreach_callback = extern "C" fn(*mut c_void, *const hyper_buf) -> c_int;
type hyper_body_data_callback =
extern "C" fn(*mut c_void, *mut hyper_context, *mut *mut hyper_buf) -> c_int;
ffi_fn! {
/// Create a new "empty" body.
///
/// If not configured, this body acts as an empty payload.
fn hyper_body_new() -> *mut hyper_body {
Box::into_raw(Box::new(hyper_body(Body::empty())))
}
}
ffi_fn! {
/// Free a `hyper_body *`.
fn hyper_body_free(body: *mut hyper_body) {
if body.is_null() {
return;
}
drop(unsafe { Box::from_raw(body) });
}
}
ffi_fn! {
/// Return a task that will poll the body for the next buffer of data.
///
/// The task value may have different types depending on the outcome:
///
/// - `HYPER_TASK_BUF`: Success, and more data was received.
/// - `HYPER_TASK_ERROR`: An error retrieving the data.
/// - `HYPER_TASK_EMPTY`: The body has finished streaming data.
///
/// This does not consume the `hyper_body *`, so it may be used to again.
/// However, it MUST NOT be used or freed until the related task completes.
fn hyper_body_data(body: *mut hyper_body) -> *mut Task {
// This doesn't take ownership of the Body, so don't allow destructor
let mut body = ManuallyDrop::new(unsafe { Box::from_raw(body) });
Box::into_raw(Task::boxed(async move {
body.0.data().await.map(|res| res.map(hyper_buf))
}))
}
}
ffi_fn! {
/// Return a task that will poll the body and execute the callback with each
/// body chunk that is received.
///
/// The `hyper_buf` pointer is only a borrowed reference, it cannot live outside
/// the execution of the callback. You must make a copy to retain it.
///
/// The callback should return `HYPER_ITER_CONTINUE` to continue iterating
/// chunks as they are received, or `HYPER_ITER_BREAK` to cancel.
///
/// This will consume the `hyper_body *`, you shouldn't use it anymore or free it.
fn hyper_body_foreach(body: *mut hyper_body, func: hyper_body_foreach_callback, userdata: *mut c_void) -> *mut Task {
if body.is_null() {
return ptr::null_mut();
}
let mut body = unsafe { Box::from_raw(body) };
let userdata = UserDataPointer(userdata);
Box::into_raw(Task::boxed(async move {
while let Some(item) = body.0.data().await {
let chunk = item?;
if HYPER_ITER_CONTINUE != func(userdata.0, &hyper_buf(chunk)) {
return Err(crate::Error::new_user_aborted_by_callback());
}
}
Ok(())
}))
}
}
ffi_fn! {
/// Set userdata on this body, which will be passed to callback functions.
fn hyper_body_set_userdata(body: *mut hyper_body, userdata: *mut c_void) {
let b = unsafe { &mut *body };
b.0.as_ffi_mut().userdata = userdata;
}
}
ffi_fn! {
/// Set the data callback for this body.
///
/// The callback is called each time hyper needs to send more data for the
/// body. It is passed the value from `hyper_body_set_userdata`.
///
/// If there is data available, the `hyper_buf **` argument should be set
/// to a `hyper_buf *` containing the data, and `HYPER_POLL_READY` should
/// be returned.
///
/// Returning `HYPER_POLL_READY` while the `hyper_buf **` argument points
/// to `NULL` will indicate the body has completed all data.
///
/// If there is more data to send, but it isn't yet available, a
/// `hyper_waker` should be saved from the `hyper_context *` argument, and
/// `HYPER_POLL_PENDING` should be returned. You must wake the saved waker
/// to signal the task when data is available.
///
/// If some error has occurred, you can return `HYPER_POLL_ERROR` to abort
/// the body.
fn hyper_body_set_data_func(body: *mut hyper_body, func: hyper_body_data_callback) {
let b = unsafe { &mut *body };
b.0.as_ffi_mut().data_func = func;
}
}
// ===== impl UserBody =====
impl UserBody {
pub(crate) fn new() -> UserBody {
UserBody {
data_func: data_noop,
userdata: std::ptr::null_mut(),
}
}
pub(crate) fn poll_data(&mut self, cx: &mut Context<'_>) -> Poll<Option<crate::Result<Bytes>>> {
let mut out = std::ptr::null_mut();
match (self.data_func)(self.userdata, hyper_context::wrap(cx), &mut out) {
super::task::HYPER_POLL_READY => {
if out.is_null() {
Poll::Ready(None)
} else {
let buf = unsafe { Box::from_raw(out) };
Poll::Ready(Some(Ok(buf.0)))
}
}
super::task::HYPER_POLL_PENDING => Poll::Pending,
super::task::HYPER_POLL_ERROR => {
Poll::Ready(Some(Err(crate::Error::new_body_write_aborted())))
}
unexpected => Poll::Ready(Some(Err(crate::Error::new_body_write(format!(
"unexpected hyper_body_data_func return code {}",
unexpected
))))),
}
}
pub(crate) fn poll_trailers(
&mut self,
_cx: &mut Context<'_>,
) -> Poll<crate::Result<Option<HeaderMap>>> {
Poll::Ready(Ok(None))
}
}
/// cbindgen:ignore
extern "C" fn data_noop(
_userdata: *mut c_void,
_: *mut hyper_context<'_>,
_: *mut *mut hyper_buf,
) -> c_int {
super::task::HYPER_POLL_READY
}
unsafe impl Send for UserBody {}
unsafe impl Sync for UserBody {}
// ===== Bytes =====
ffi_fn! {
/// Create a new `hyper_buf *` by copying the provided bytes.
///
/// This makes an owned copy of the bytes, so the `buf` argument can be
/// freed or changed afterwards.
fn hyper_buf_copy(buf: *const u8, len: size_t) -> *mut hyper_buf {
let slice = unsafe {
std::slice::from_raw_parts(buf, len)
};
Box::into_raw(Box::new(hyper_buf(Bytes::copy_from_slice(slice))))
}
}
ffi_fn! {
/// Get a pointer to the bytes in this buffer.
///
/// This should be used in conjunction with `hyper_buf_len` to get the length
/// of the bytes data.
///
/// This pointer is borrowed data, and not valid once the `hyper_buf` is
/// consumed/freed.
fn hyper_buf_bytes(buf: *const hyper_buf) -> *const u8 {
unsafe { (*buf).0.as_ptr() }
}
}
ffi_fn! {
/// Get the length of the bytes this buffer contains.
fn hyper_buf_len(buf: *const hyper_buf) -> size_t {
unsafe { (*buf).0.len() }
}
}
ffi_fn! {
/// Free this buffer.
fn hyper_buf_free(buf: *mut hyper_buf) {
drop(unsafe { Box::from_raw(buf) });
}
}
unsafe impl AsTaskType for hyper_buf {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_BUF
}
}

148
src/ffi/client.rs Normal file
View File

@@ -0,0 +1,148 @@
use std::sync::Arc;
use libc::c_int;
use crate::client::conn;
use crate::rt::Executor as _;
use super::error::hyper_code;
use super::http_types::{hyper_request, hyper_response};
use super::io::Io;
use super::task::{hyper_task_return_type, AsTaskType, Exec, Task, WeakExec};
pub struct hyper_clientconn_options {
builder: conn::Builder,
/// Use a `Weak` to prevent cycles.
exec: WeakExec,
}
pub struct hyper_clientconn {
tx: conn::SendRequest<crate::Body>,
}
// ===== impl hyper_clientconn =====
ffi_fn! {
/// Starts an HTTP client connection handshake using the provided IO transport
/// and options.
///
/// Both the `io` and the `options` are consumed in this function call.
///
/// The returned `hyper_task *` must be polled with an executor until the
/// handshake completes, at which point the value can be taken.
fn hyper_clientconn_handshake(io: *mut Io, options: *mut hyper_clientconn_options) -> *mut Task {
if io.is_null() {
return std::ptr::null_mut();
}
if options.is_null() {
return std::ptr::null_mut();
}
let options = unsafe { Box::from_raw(options) };
let io = unsafe { Box::from_raw(io) };
Box::into_raw(Task::boxed(async move {
options.builder.handshake::<_, crate::Body>(io)
.await
.map(|(tx, conn)| {
options.exec.execute(Box::pin(async move {
let _ = conn.await;
}));
hyper_clientconn { tx }
})
}))
}
}
ffi_fn! {
/// Send a request on the client connection.
///
/// Returns a task that needs to be polled until it is ready. When ready, the
/// task yields a `hyper_response *`.
fn hyper_clientconn_send(conn: *mut hyper_clientconn, req: *mut hyper_request) -> *mut Task {
if conn.is_null() {
return std::ptr::null_mut();
}
if req.is_null() {
return std::ptr::null_mut();
}
let req = unsafe { Box::from_raw(req) };
let fut = unsafe { &mut *conn }.tx.send_request(req.0);
let fut = async move {
fut.await.map(hyper_response)
};
Box::into_raw(Task::boxed(fut))
}
}
ffi_fn! {
/// Free a `hyper_clientconn *`.
fn hyper_clientconn_free(conn: *mut hyper_clientconn) {
drop(unsafe { Box::from_raw(conn) });
}
}
unsafe impl AsTaskType for hyper_clientconn {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_CLIENTCONN
}
}
// ===== impl hyper_clientconn_options =====
ffi_fn! {
/// Creates a new set of HTTP clientconn options to be used in a handshake.
fn hyper_clientconn_options_new() -> *mut hyper_clientconn_options {
Box::into_raw(Box::new(hyper_clientconn_options {
builder: conn::Builder::new(),
exec: WeakExec::new(),
}))
}
}
ffi_fn! {
/// Free a `hyper_clientconn_options *`.
fn hyper_clientconn_options_free(opts: *mut hyper_clientconn_options) {
drop(unsafe { Box::from_raw(opts) });
}
}
ffi_fn! {
/// Set the client background task executor.
///
/// This does not consume the `options` or the `exec`.
fn hyper_clientconn_options_exec(opts: *mut hyper_clientconn_options, exec: *const Exec) {
let opts = unsafe { &mut *opts };
let exec = unsafe { Arc::from_raw(exec) };
let weak_exec = Exec::downgrade(&exec);
std::mem::forget(exec);
opts.builder.executor(weak_exec.clone());
opts.exec = weak_exec;
}
}
ffi_fn! {
/// Set the whether to use HTTP2.
///
/// Pass `0` to disable, `1` to enable.
fn hyper_clientconn_options_http2(opts: *mut hyper_clientconn_options, enabled: c_int) -> hyper_code {
#[cfg(feature = "http2")]
{
let opts = unsafe { &mut *opts };
opts.builder.http2_only(enabled != 0);
hyper_code::HYPERE_OK
}
#[cfg(not(feature = "http2"))]
{
drop(opts);
drop(enabled);
hyper_code::HYPERE_FEATURE_NOT_ENABLED
}
}
}

80
src/ffi/error.rs Normal file
View File

@@ -0,0 +1,80 @@
use libc::size_t;
pub struct hyper_error(crate::Error);
#[repr(C)]
pub enum hyper_code {
/// All is well.
HYPERE_OK,
/// General error, details in the `hyper_error *`.
HYPERE_ERROR,
/// A function argument was invalid.
HYPERE_INVALID_ARG,
/// The IO transport returned an EOF when one wasn't expected.
///
/// This typically means an HTTP request or response was expected, but the
/// connection closed cleanly without sending (all of) it.
HYPERE_UNEXPECTED_EOF,
/// Aborted by a user supplied callback.
HYPERE_ABORTED_BY_CALLBACK,
/// An optional hyper feature was not enabled.
#[cfg_attr(feature = "http2", allow(unused))]
HYPERE_FEATURE_NOT_ENABLED,
}
// ===== impl hyper_error =====
impl hyper_error {
fn code(&self) -> hyper_code {
use crate::error::Kind as ErrorKind;
use crate::error::User;
match self.0.kind() {
ErrorKind::IncompleteMessage => hyper_code::HYPERE_UNEXPECTED_EOF,
ErrorKind::User(User::AbortedByCallback) => hyper_code::HYPERE_ABORTED_BY_CALLBACK,
// TODO: add more variants
_ => hyper_code::HYPERE_ERROR
}
}
fn print_to(&self, dst: &mut [u8]) -> usize {
use std::io::Write;
let mut dst = std::io::Cursor::new(dst);
// A write! error doesn't matter. As much as possible will have been
// written, and the Cursor position will know how far that is (even
// if that is zero).
let _ = write!(dst, "{}", &self.0);
dst.position() as usize
}
}
ffi_fn! {
/// Frees a `hyper_error`.
fn hyper_error_free(err: *mut hyper_error) {
drop(unsafe { Box::from_raw(err) });
}
}
ffi_fn! {
/// Get an equivalent `hyper_code` from this error.
fn hyper_error_code(err: *const hyper_error) -> hyper_code {
unsafe { &*err }.code()
}
}
ffi_fn! {
/// Print the details of this error to a buffer.
///
/// The `dst_len` value must be the maximum length that the buffer can
/// store.
///
/// The return value is number of bytes that were written to `dst`.
fn hyper_error_print(err: *const hyper_error, dst: *mut u8, dst_len: size_t) -> size_t {
let dst = unsafe {
std::slice::from_raw_parts_mut(dst, dst_len)
};
unsafe { &*err }.print_to(dst)
}
}

267
src/ffi/http_types.rs Normal file
View File

@@ -0,0 +1,267 @@
use libc::{c_int, size_t};
use std::ffi::c_void;
use super::body::hyper_body;
use super::error::hyper_code;
use super::task::{hyper_task_return_type, AsTaskType};
use super::HYPER_ITER_CONTINUE;
use crate::header::{HeaderName, HeaderValue};
use crate::{Body, HeaderMap, Method, Request, Response, Uri};
// ===== impl Request =====
pub struct hyper_request(pub(super) Request<Body>);
pub struct hyper_response(pub(super) Response<Body>);
pub struct hyper_headers(pub(super) HeaderMap);
ffi_fn! {
/// Construct a new HTTP request.
fn hyper_request_new() -> *mut hyper_request {
Box::into_raw(Box::new(hyper_request(Request::new(Body::empty()))))
}
}
ffi_fn! {
/// Free an HTTP request if not going to send it on a client.
fn hyper_request_free(req: *mut hyper_request) {
drop(unsafe { Box::from_raw(req) });
}
}
ffi_fn! {
/// Set the HTTP Method of the request.
fn hyper_request_set_method(req: *mut hyper_request, method: *const u8, method_len: size_t) -> hyper_code {
let bytes = unsafe {
std::slice::from_raw_parts(method, method_len as usize)
};
match Method::from_bytes(bytes) {
Ok(m) => {
*unsafe { &mut *req }.0.method_mut() = m;
hyper_code::HYPERE_OK
},
Err(_) => {
hyper_code::HYPERE_INVALID_ARG
}
}
}
}
ffi_fn! {
/// Set the URI of the request.
fn hyper_request_set_uri(req: *mut hyper_request, uri: *const u8, uri_len: size_t) -> hyper_code {
let bytes = unsafe {
std::slice::from_raw_parts(uri, uri_len as usize)
};
match Uri::from_maybe_shared(bytes) {
Ok(u) => {
*unsafe { &mut *req }.0.uri_mut() = u;
hyper_code::HYPERE_OK
},
Err(_) => {
hyper_code::HYPERE_INVALID_ARG
}
}
}
}
ffi_fn! {
/// Set the preferred HTTP version of the request.
///
/// The version value should be one of the `HYPER_HTTP_VERSION_` constants.
///
/// Note that this won't change the major HTTP version of the connection,
/// since that is determined at the handshake step.
fn hyper_request_set_version(req: *mut hyper_request, version: c_int) -> hyper_code {
use http::Version;
*unsafe { &mut *req }.0.version_mut() = match version {
super::HYPER_HTTP_VERSION_NONE => Version::HTTP_11,
super::HYPER_HTTP_VERSION_1_0 => Version::HTTP_10,
super::HYPER_HTTP_VERSION_1_1 => Version::HTTP_11,
super::HYPER_HTTP_VERSION_2 => Version::HTTP_2,
_ => {
// We don't know this version
return hyper_code::HYPERE_INVALID_ARG;
}
};
hyper_code::HYPERE_OK
}
}
ffi_fn! {
/// Gets a reference to the HTTP headers of this request
///
/// This is not an owned reference, so it should not be accessed after the
/// `hyper_request` has been consumed.
fn hyper_request_headers(req: *mut hyper_request) -> *mut hyper_headers {
hyper_headers::wrap(unsafe { &mut *req }.0.headers_mut())
}
}
ffi_fn! {
/// Set the body of the request.
///
/// The default is an empty body.
///
/// This takes ownership of the `hyper_body *`, you must not use it or
/// free it after setting it on the request.
fn hyper_request_set_body(req: *mut hyper_request, body: *mut hyper_body) -> hyper_code {
let body = unsafe { Box::from_raw(body) };
*unsafe { &mut *req }.0.body_mut() = body.0;
hyper_code::HYPERE_OK
}
}
// ===== impl Response =====
ffi_fn! {
/// Free an HTTP response after using it.
fn hyper_response_free(resp: *mut hyper_response) {
drop(unsafe { Box::from_raw(resp) });
}
}
ffi_fn! {
/// Get the HTTP-Status code of this response.
///
/// It will always be within the range of 100-599.
fn hyper_response_status(resp: *const hyper_response) -> u16 {
unsafe { &*resp }.0.status().as_u16()
}
}
ffi_fn! {
/// Get the HTTP version used by this response.
///
/// The returned value could be:
///
/// - `HYPER_HTTP_VERSION_1_0`
/// - `HYPER_HTTP_VERSION_1_1`
/// - `HYPER_HTTP_VERSION_2`
/// - `HYPER_HTTP_VERSION_NONE` if newer (or older).
fn hyper_response_version(resp: *const hyper_response) -> c_int {
use http::Version;
match unsafe { &*resp }.0.version() {
Version::HTTP_10 => super::HYPER_HTTP_VERSION_1_0,
Version::HTTP_11 => super::HYPER_HTTP_VERSION_1_1,
Version::HTTP_2 => super::HYPER_HTTP_VERSION_2,
_ => super::HYPER_HTTP_VERSION_NONE,
}
}
}
ffi_fn! {
/// Gets a reference to the HTTP headers of this response.
///
/// This is not an owned reference, so it should not be accessed after the
/// `hyper_response` has been freed.
fn hyper_response_headers(resp: *mut hyper_response) -> *mut hyper_headers {
hyper_headers::wrap(unsafe { &mut *resp }.0.headers_mut())
}
}
ffi_fn! {
/// Take ownership of the body of this response.
///
/// It is safe to free the response even after taking ownership of its body.
fn hyper_response_body(resp: *mut hyper_response) -> *mut hyper_body {
let body = std::mem::take(unsafe { &mut *resp }.0.body_mut());
Box::into_raw(Box::new(hyper_body(body)))
}
}
unsafe impl AsTaskType for hyper_response {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_RESPONSE
}
}
// ===== impl Headers =====
type hyper_headers_foreach_callback =
extern "C" fn(*mut c_void, *const u8, size_t, *const u8, size_t) -> c_int;
impl hyper_headers {
pub(crate) fn wrap(cx: &mut HeaderMap) -> &mut hyper_headers {
// A struct with only one field has the same layout as that field.
unsafe { std::mem::transmute::<&mut HeaderMap, &mut hyper_headers>(cx) }
}
}
ffi_fn! {
/// Iterates the headers passing each name and value pair to the callback.
///
/// The `userdata` pointer is also passed to the callback.
///
/// The callback should return `HYPER_ITER_CONTINUE` to keep iterating, or
/// `HYPER_ITER_BREAK` to stop.
fn hyper_headers_foreach(headers: *const hyper_headers, func: hyper_headers_foreach_callback, userdata: *mut c_void) {
for (name, value) in unsafe { &*headers }.0.iter() {
let name_ptr = name.as_str().as_bytes().as_ptr();
let name_len = name.as_str().as_bytes().len();
let val_ptr = value.as_bytes().as_ptr();
let val_len = value.as_bytes().len();
if HYPER_ITER_CONTINUE != func(userdata, name_ptr, name_len, val_ptr, val_len) {
break;
}
}
}
}
ffi_fn! {
/// Sets the header with the provided name to the provided value.
///
/// This overwrites any previous value set for the header.
fn hyper_headers_set(headers: *mut hyper_headers, name: *const u8, name_len: size_t, value: *const u8, value_len: size_t) -> hyper_code {
let headers = unsafe { &mut *headers };
match unsafe { raw_name_value(name, name_len, value, value_len) } {
Ok((name, value)) => {
headers.0.insert(name, value);
hyper_code::HYPERE_OK
}
Err(code) => code,
}
}
}
ffi_fn! {
/// Adds the provided value to the list of the provided name.
///
/// If there were already existing values for the name, this will append the
/// new value to the internal list.
fn hyper_headers_add(headers: *mut hyper_headers, name: *const u8, name_len: size_t, value: *const u8, value_len: size_t) -> hyper_code {
let headers = unsafe { &mut *headers };
match unsafe { raw_name_value(name, name_len, value, value_len) } {
Ok((name, value)) => {
headers.0.append(name, value);
hyper_code::HYPERE_OK
}
Err(code) => code,
}
}
}
unsafe fn raw_name_value(
name: *const u8,
name_len: size_t,
value: *const u8,
value_len: size_t,
) -> Result<(HeaderName, HeaderValue), hyper_code> {
let name = std::slice::from_raw_parts(name, name_len);
let name = match HeaderName::from_bytes(name) {
Ok(name) => name,
Err(_) => return Err(hyper_code::HYPERE_INVALID_ARG),
};
let value = std::slice::from_raw_parts(value, value_len);
let value = match HeaderValue::from_bytes(value) {
Ok(val) => val,
Err(_) => return Err(hyper_code::HYPERE_INVALID_ARG),
};
Ok((name, value))
}

173
src/ffi/io.rs Normal file
View File

@@ -0,0 +1,173 @@
use std::ffi::c_void;
use std::pin::Pin;
use std::task::{Context, Poll};
use libc::size_t;
use tokio::io::{AsyncRead, AsyncWrite};
use super::task::hyper_context;
pub const HYPER_IO_PENDING: size_t = 0xFFFFFFFF;
pub const HYPER_IO_ERROR: size_t = 0xFFFFFFFE;
type hyper_io_read_callback =
extern "C" fn(*mut c_void, *mut hyper_context<'_>, *mut u8, size_t) -> size_t;
type hyper_io_write_callback =
extern "C" fn(*mut c_void, *mut hyper_context<'_>, *const u8, size_t) -> size_t;
pub struct Io {
read: hyper_io_read_callback,
write: hyper_io_write_callback,
userdata: *mut c_void,
}
ffi_fn! {
/// Create a new IO type used to represent a transport.
///
/// The read and write functions of this transport should be set with
/// `hyper_io_set_read` and `hyper_io_set_write`.
fn hyper_io_new() -> *mut Io {
Box::into_raw(Box::new(Io {
read: read_noop,
write: write_noop,
userdata: std::ptr::null_mut(),
}))
}
}
ffi_fn! {
/// Free an unused `hyper_io *`.
///
/// This is typically only useful if you aren't going to pass ownership
/// of the IO handle to hyper, such as with `hyper_clientconn_handshake()`.
fn hyper_io_free(io: *mut Io) {
drop(unsafe { Box::from_raw(io) });
}
}
ffi_fn! {
/// Set the user data pointer for this IO to some value.
///
/// This value is passed as an argument to the read and write callbacks.
fn hyper_io_set_userdata(io: *mut Io, data: *mut c_void) {
unsafe { &mut *io }.userdata = data;
}
}
ffi_fn! {
/// Set the read function for this IO transport.
///
/// Data that is read from the transport should be put in the `buf` pointer,
/// up to `buf_len` bytes. The number of bytes read should be the return value.
///
/// It is undefined behavior to try to access the bytes in the `buf` pointer,
/// unless you have already written them yourself. It is also undefined behavior
/// to return that more bytes have been written than actually set on the `buf`.
///
/// If there is no data currently available, a waker should be claimed from
/// the `ctx` and registered with whatever polling mechanism is used to signal
/// when data is available later on. The return value should be
/// `HYPER_IO_PENDING`.
///
/// If there is an irrecoverable error reading data, then `HYPER_IO_ERROR`
/// should be the return value.
fn hyper_io_set_read(io: *mut Io, func: hyper_io_read_callback) {
unsafe { &mut *io }.read = func;
}
}
ffi_fn! {
/// Set the write function for this IO transport.
///
/// Data from the `buf` pointer should be written to the transport, up to
/// `buf_len` bytes. The number of bytes written should be the return value.
///
/// If no data can currently be written, the `waker` should be cloned and
/// registered with whatever polling mechanism is used to signal when data
/// is available later on. The return value should be `HYPER_IO_PENDING`.
///
/// Yeet.
///
/// If there is an irrecoverable error reading data, then `HYPER_IO_ERROR`
/// should be the return value.
fn hyper_io_set_write(io: *mut Io, func: hyper_io_write_callback) {
unsafe { &mut *io }.write = func;
}
}
/// cbindgen:ignore
extern "C" fn read_noop(
_userdata: *mut c_void,
_: *mut hyper_context<'_>,
_buf: *mut u8,
_buf_len: size_t,
) -> size_t {
0
}
/// cbindgen:ignore
extern "C" fn write_noop(
_userdata: *mut c_void,
_: *mut hyper_context<'_>,
_buf: *const u8,
_buf_len: size_t,
) -> size_t {
0
}
impl AsyncRead for Io {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
let buf_ptr = unsafe { buf.unfilled_mut() }.as_mut_ptr() as *mut u8;
let buf_len = buf.remaining();
match (self.read)(self.userdata, hyper_context::wrap(cx), buf_ptr, buf_len) {
HYPER_IO_PENDING => Poll::Pending,
HYPER_IO_ERROR => Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"io error",
))),
ok => {
// We have to trust that the user's read callback actually
// filled in that many bytes... :(
unsafe { buf.assume_init(ok) };
buf.advance(ok);
Poll::Ready(Ok(()))
}
}
}
}
impl AsyncWrite for Io {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
let buf_ptr = buf.as_ptr();
let buf_len = buf.len();
match (self.write)(self.userdata, hyper_context::wrap(cx), buf_ptr, buf_len) {
HYPER_IO_PENDING => Poll::Pending,
HYPER_IO_ERROR => Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
"io error",
))),
ok => Poll::Ready(Ok(ok)),
}
}
fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<std::io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<std::io::Result<()>> {
Poll::Ready(Ok(()))
}
}
unsafe impl Send for Io {}
unsafe impl Sync for Io {}

23
src/ffi/macros.rs Normal file
View File

@@ -0,0 +1,23 @@
macro_rules! ffi_fn {
($(#[$doc:meta])* fn $name:ident($($arg:ident: $arg_ty:ty),*) -> $ret:ty $body:block) => {
$(#[$doc])*
#[no_mangle]
pub extern fn $name($($arg: $arg_ty),*) -> $ret {
use std::panic::{self, AssertUnwindSafe};
match panic::catch_unwind(AssertUnwindSafe(move || $body)) {
Ok(v) => v,
Err(_) => {
// TODO: We shouldn't abort, but rather figure out how to
// convert into the return type that the function errored.
eprintln!("panic unwind caught, aborting");
std::process::abort();
}
}
}
};
($(#[$doc:meta])* fn $name:ident($($arg:ident: $arg_ty:ty),*) $body:block) => {
ffi_fn!($(#[$doc])* fn $name($($arg: $arg_ty),*) -> () $body);
};
}

55
src/ffi/mod.rs Normal file
View File

@@ -0,0 +1,55 @@
// We have a lot of c-types in here, stop warning about their names!
#![allow(non_camel_case_types)]
// We may eventually allow the FFI to be enabled without `client` or `http1`,
// that is why we don't auto enable them as `ffi = ["client", "http1"]` in
// the `Cargo.toml`.
//
// But for now, give a clear message that this compile error is expected.
#[cfg(not(all(feature = "client", feature = "http1")))]
compile_error!("The `ffi` feature currently requires the `client` and `http1` features.");
#[cfg(not(hyper_unstable_ffi))]
compile_error!(
"\
The `ffi` feature is unstable, and requires the \
`RUSTFLAGS='--cfg hyper_unstable_ffi'` environment variable to be set.\
"
);
#[macro_use]
mod macros;
mod body;
mod client;
mod error;
mod http_types;
mod io;
mod task;
pub(crate) use self::body::UserBody;
pub const HYPER_ITER_CONTINUE: libc::c_int = 0;
#[allow(unused)]
pub const HYPER_ITER_BREAK: libc::c_int = 1;
pub const HYPER_HTTP_VERSION_NONE: libc::c_int = 0;
pub const HYPER_HTTP_VERSION_1_0: libc::c_int = 10;
pub const HYPER_HTTP_VERSION_1_1: libc::c_int = 11;
pub const HYPER_HTTP_VERSION_2: libc::c_int = 20;
struct UserDataPointer(*mut std::ffi::c_void);
// We don't actually know anything about this pointer, it's up to the user
// to do the right thing.
unsafe impl Send for UserDataPointer {}
/// cbindgen:ignore
static VERSION_CSTR: &str = concat!(env!("CARGO_PKG_VERSION"), "\0");
ffi_fn! {
/// Returns a static ASCII (null terminated) string of the hyper version.
fn hyper_version() -> *const libc::c_char {
VERSION_CSTR.as_ptr() as _
}
}

415
src/ffi/task.rs Normal file
View File

@@ -0,0 +1,415 @@
use std::ffi::c_void;
use std::future::Future;
use std::pin::Pin;
use std::ptr;
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc, Mutex, Weak,
};
use std::task::{Context, Poll};
use futures_util::stream::{FuturesUnordered, Stream};
use libc::c_int;
use super::error::hyper_code;
use super::UserDataPointer;
type BoxFuture<T> = Pin<Box<dyn Future<Output = T> + Send>>;
type BoxAny = Box<dyn AsTaskType + Send + Sync>;
pub const HYPER_POLL_READY: c_int = 0;
pub const HYPER_POLL_PENDING: c_int = 1;
pub const HYPER_POLL_ERROR: c_int = 3;
pub struct Exec {
/// The executor of all task futures.
///
/// There should never be contention on the mutex, as it is only locked
/// to drive the futures. However, we cannot gaurantee proper usage from
/// `hyper_executor_poll()`, which in C could potentially be called inside
/// one of the stored futures. The mutex isn't re-entrant, so doing so
/// would result in a deadlock, but that's better than data corruption.
driver: Mutex<FuturesUnordered<TaskFuture>>,
/// The queue of futures that need to be pushed into the `driver`.
///
/// This is has a separate mutex since `spawn` could be called from inside
/// a future, which would mean the driver's mutex is already locked.
spawn_queue: Mutex<Vec<TaskFuture>>,
/// This is used to track when a future calls `wake` while we are within
/// `Exec::poll_next`.
is_woken: Arc<ExecWaker>,
}
#[derive(Clone)]
pub(crate) struct WeakExec(Weak<Exec>);
struct ExecWaker(AtomicBool);
pub struct Task {
future: BoxFuture<BoxAny>,
output: Option<BoxAny>,
userdata: UserDataPointer,
}
struct TaskFuture {
task: Option<Box<Task>>,
}
pub struct hyper_context<'a>(Context<'a>);
pub struct hyper_waker {
waker: std::task::Waker,
}
#[repr(C)]
pub enum hyper_task_return_type {
/// The value of this task is null (does not imply an error).
HYPER_TASK_EMPTY,
/// The value of this task is `hyper_error *`.
HYPER_TASK_ERROR,
/// The value of this task is `hyper_clientconn *`.
HYPER_TASK_CLIENTCONN,
/// The value of this task is `hyper_response *`.
HYPER_TASK_RESPONSE,
/// The value of this task is `hyper_buf *`.
HYPER_TASK_BUF,
}
pub(crate) unsafe trait AsTaskType {
fn as_task_type(&self) -> hyper_task_return_type;
}
pub(crate) trait IntoDynTaskType {
fn into_dyn_task_type(self) -> BoxAny;
}
// ===== impl Exec =====
impl Exec {
fn new() -> Arc<Exec> {
Arc::new(Exec {
driver: Mutex::new(FuturesUnordered::new()),
spawn_queue: Mutex::new(Vec::new()),
is_woken: Arc::new(ExecWaker(AtomicBool::new(false))),
})
}
pub(crate) fn downgrade(exec: &Arc<Exec>) -> WeakExec {
WeakExec(Arc::downgrade(exec))
}
fn spawn(&self, task: Box<Task>) {
self.spawn_queue
.lock()
.unwrap()
.push(TaskFuture { task: Some(task) });
}
fn poll_next(&self) -> Option<Box<Task>> {
// Drain the queue first.
self.drain_queue();
let waker = futures_util::task::waker_ref(&self.is_woken);
let mut cx = Context::from_waker(&waker);
loop {
match Pin::new(&mut *self.driver.lock().unwrap()).poll_next(&mut cx) {
Poll::Ready(val) => return val,
Poll::Pending => {
// Check if any of the pending tasks tried to spawn
// some new tasks. If so, drain into the driver and loop.
if self.drain_queue() {
continue;
}
// If the driver called `wake` while we were polling,
// we should poll again immediately!
if self.is_woken.0.swap(false, Ordering::SeqCst) {
continue;
}
return None;
}
}
}
}
fn drain_queue(&self) -> bool {
let mut queue = self.spawn_queue.lock().unwrap();
if queue.is_empty() {
return false;
}
let driver = self.driver.lock().unwrap();
for task in queue.drain(..) {
driver.push(task);
}
true
}
}
impl futures_util::task::ArcWake for ExecWaker {
fn wake_by_ref(me: &Arc<ExecWaker>) {
me.0.store(true, Ordering::SeqCst);
}
}
// ===== impl WeakExec =====
impl WeakExec {
pub(crate) fn new() -> Self {
WeakExec(Weak::new())
}
}
impl crate::rt::Executor<BoxFuture<()>> for WeakExec {
fn execute(&self, fut: BoxFuture<()>) {
if let Some(exec) = self.0.upgrade() {
exec.spawn(Task::boxed(fut));
}
}
}
ffi_fn! {
/// Creates a new task executor.
fn hyper_executor_new() -> *const Exec {
Arc::into_raw(Exec::new())
}
}
ffi_fn! {
/// Frees an executor and any incomplete tasks still part of it.
fn hyper_executor_free(exec: *const Exec) {
drop(unsafe { Arc::from_raw(exec) });
}
}
ffi_fn! {
/// Push a task onto the executor.
///
/// The executor takes ownership of the task, it should not be accessed
/// again unless returned back to the user with `hyper_executor_poll`.
fn hyper_executor_push(exec: *const Exec, task: *mut Task) -> hyper_code {
if exec.is_null() || task.is_null() {
return hyper_code::HYPERE_INVALID_ARG;
}
let exec = unsafe { &*exec };
let task = unsafe { Box::from_raw(task) };
exec.spawn(task);
hyper_code::HYPERE_OK
}
}
ffi_fn! {
/// Polls the executor, trying to make progress on any tasks that have notified
/// that they are ready again.
///
/// If ready, returns a task from the executor that has completed.
///
/// If there are no ready tasks, this returns `NULL`.
fn hyper_executor_poll(exec: *const Exec) -> *mut Task {
// We only want an `&Arc` in here, so wrap in a `ManuallyDrop` so we
// don't accidentally trigger a ref_dec of the Arc.
let exec = unsafe { &*exec };
match exec.poll_next() {
Some(task) => Box::into_raw(task),
None => ptr::null_mut(),
}
}
}
// ===== impl Task =====
impl Task {
pub(crate) fn boxed<F>(fut: F) -> Box<Task>
where
F: Future + Send + 'static,
F::Output: IntoDynTaskType + Send + Sync + 'static,
{
Box::new(Task {
future: Box::pin(async move { fut.await.into_dyn_task_type() }),
output: None,
userdata: UserDataPointer(ptr::null_mut()),
})
}
fn output_type(&self) -> hyper_task_return_type {
match self.output {
None => hyper_task_return_type::HYPER_TASK_EMPTY,
Some(ref val) => val.as_task_type(),
}
}
}
impl Future for TaskFuture {
type Output = Box<Task>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match Pin::new(&mut self.task.as_mut().unwrap().future).poll(cx) {
Poll::Ready(val) => {
let mut task = self.task.take().unwrap();
task.output = Some(val);
Poll::Ready(task)
}
Poll::Pending => Poll::Pending,
}
}
}
ffi_fn! {
/// Free a task.
fn hyper_task_free(task: *mut Task) {
drop(unsafe { Box::from_raw(task) });
}
}
ffi_fn! {
/// Takes the output value of this task.
///
/// This must only be called once polling the task on an executor has finished
/// this task.
///
/// Use `hyper_task_type` to determine the type of the `void *` return value.
fn hyper_task_value(task: *mut Task) -> *mut c_void {
if task.is_null() {
return ptr::null_mut();
}
let task = unsafe { &mut *task };
if let Some(val) = task.output.take() {
let p = Box::into_raw(val) as *mut c_void;
// protect from returning fake pointers to empty types
if p == std::ptr::NonNull::<c_void>::dangling().as_ptr() {
ptr::null_mut()
} else {
p
}
} else {
ptr::null_mut()
}
}
}
ffi_fn! {
/// Query the return type of this task.
fn hyper_task_type(task: *mut Task) -> hyper_task_return_type {
if task.is_null() {
// instead of blowing up spectacularly, just say this null task
// doesn't have a value to retrieve.
return hyper_task_return_type::HYPER_TASK_EMPTY;
}
unsafe { &*task }.output_type()
}
}
ffi_fn! {
/// Set a user data pointer to be associated with this task.
///
/// This value will be passed to task callbacks, and can be checked later
/// with `hyper_task_userdata`.
fn hyper_task_set_userdata(task: *mut Task, userdata: *mut c_void) {
if task.is_null() {
return;
}
unsafe { (*task).userdata = UserDataPointer(userdata) };
}
}
ffi_fn! {
/// Retrieve the userdata that has been set via `hyper_task_set_userdata`.
fn hyper_task_userdata(task: *mut Task) -> *mut c_void {
if task.is_null() {
return ptr::null_mut();
}
unsafe { &*task }.userdata.0
}
}
// ===== impl AsTaskType =====
unsafe impl AsTaskType for () {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_EMPTY
}
}
unsafe impl AsTaskType for crate::Error {
fn as_task_type(&self) -> hyper_task_return_type {
hyper_task_return_type::HYPER_TASK_ERROR
}
}
impl<T> IntoDynTaskType for T
where
T: AsTaskType + Send + Sync + 'static,
{
fn into_dyn_task_type(self) -> BoxAny {
Box::new(self)
}
}
impl<T> IntoDynTaskType for crate::Result<T>
where
T: IntoDynTaskType + Send + Sync + 'static,
{
fn into_dyn_task_type(self) -> BoxAny {
match self {
Ok(val) => val.into_dyn_task_type(),
Err(err) => Box::new(err),
}
}
}
impl<T> IntoDynTaskType for Option<T>
where
T: IntoDynTaskType + Send + Sync + 'static,
{
fn into_dyn_task_type(self) -> BoxAny {
match self {
Some(val) => val.into_dyn_task_type(),
None => ().into_dyn_task_type(),
}
}
}
// ===== impl hyper_context =====
impl hyper_context<'_> {
pub(crate) fn wrap<'a, 'b>(cx: &'a mut Context<'b>) -> &'a mut hyper_context<'b> {
// A struct with only one field has the same layout as that field.
unsafe { std::mem::transmute::<&mut Context<'_>, &mut hyper_context<'_>>(cx) }
}
}
ffi_fn! {
/// Copies a waker out of the task context.
fn hyper_context_waker(cx: *mut hyper_context<'_>) -> *mut hyper_waker {
let waker = unsafe { &mut *cx }.0.waker().clone();
Box::into_raw(Box::new(hyper_waker { waker }))
}
}
// ===== impl hyper_waker =====
ffi_fn! {
/// Free a waker that hasn't been woken.
fn hyper_waker_free(waker: *mut hyper_waker) {
drop(unsafe { Box::from_raw(waker) });
}
}
ffi_fn! {
/// Free a waker that hasn't been woken.
fn hyper_waker_wake(waker: *mut hyper_waker) {
let waker = unsafe { Box::from_raw(waker) };
waker.waker.wake();
}
}

View File

@@ -87,6 +87,9 @@ pub mod rt;
pub mod service;
pub mod upgrade;
#[cfg(feature = "ffi")]
mod ffi;
cfg_proto! {
mod headers;
mod proto;

View File

@@ -58,10 +58,10 @@ cfg_client! {
impl<D, Bs, I, T> Dispatcher<D, Bs, I, T>
where
D: Dispatch<
PollItem = MessageHead<T::Outgoing>,
PollBody = Bs,
RecvItem = MessageHead<T::Incoming>,
> + Unpin,
PollItem = MessageHead<T::Outgoing>,
PollBody = Bs,
RecvItem = MessageHead<T::Incoming>,
> + Unpin,
D::PollError: Into<Box<dyn StdError + Send + Sync>>,
I: AsyncRead + AsyncWrite + Unpin,
T: Http1Transaction + Unpin,
@@ -405,10 +405,10 @@ where
impl<D, Bs, I, T> Future for Dispatcher<D, Bs, I, T>
where
D: Dispatch<
PollItem = MessageHead<T::Outgoing>,
PollBody = Bs,
RecvItem = MessageHead<T::Incoming>,
> + Unpin,
PollItem = MessageHead<T::Outgoing>,
PollBody = Bs,
RecvItem = MessageHead<T::Incoming>,
> + Unpin,
D::PollError: Into<Box<dyn StdError + Send + Sync>>,
I: AsyncRead + AsyncWrite + Unpin,
T: Http1Transaction + Unpin,