Files
hyper/src/server/mod.rs
Sean McArthur f7532b71d1 feat(lib): add support to disable tokio-proto internals
For now, this adds `client::Config::no_proto`, `server::Http::no_proto`,
and `server::Server::no_proto` to skip tokio-proto implementations, and
use an internal dispatch system instead.

`Http::no_proto` is similar to `Http::bind_connection`, but returns a
`Connection` that is a `Future` to drive HTTP with the provided service.
Any errors prior to parsing a request, and after delivering a response
(but before flush the response body) will be returned from this future.

See #1342 for more.
2017-10-27 00:02:07 -07:00

665 lines
21 KiB
Rust

//! HTTP Server
//!
//! A `Server` is created to listen on a port, parse HTTP requests, and hand
//! them off to a `Service`.
#[cfg(feature = "compat")]
mod compat_impl;
#[cfg(feature = "compat")]
pub mod compat;
use std::cell::RefCell;
use std::fmt;
use std::io;
use std::marker::PhantomData;
use std::net::SocketAddr;
use std::rc::{Rc, Weak};
use std::time::Duration;
use futures::future;
use futures::task::{self, Task};
use futures::{Future, Stream, Poll, Async, Sink, StartSend, AsyncSink};
use futures::future::Map;
#[cfg(feature = "compat")]
use http;
use tokio_io::{AsyncRead, AsyncWrite};
use tokio::reactor::{Core, Handle, Timeout};
use tokio::net::TcpListener;
use tokio_proto::BindServer;
use tokio_proto::streaming::Message;
use tokio_proto::streaming::pipeline::{Transport, Frame, ServerProto};
pub use tokio_service::{NewService, Service};
use proto;
use proto::response;
use proto::request;
#[cfg(feature = "compat")]
use proto::Body;
pub use proto::response::Response;
pub use proto::request::Request;
/// An instance of the HTTP protocol, and implementation of tokio-proto's
/// `ServerProto` trait.
///
/// This structure is used to create instances of `Server` or to spawn off tasks
/// which handle a connection to an HTTP server. Each instance of `Http` can be
/// configured with various protocol-level options such as keepalive.
pub struct Http<B = ::Chunk> {
keep_alive: bool,
pipeline: bool,
_marker: PhantomData<B>,
}
/// An instance of a server created through `Http::bind`.
///
/// This server is intended as a convenience for creating a TCP listener on an
/// address and then serving TCP connections accepted with the service provided.
pub struct Server<S, B>
where B: Stream<Error=::Error>,
B::Item: AsRef<[u8]>,
{
protocol: Http<B::Item>,
new_service: S,
core: Core,
listener: TcpListener,
shutdown_timeout: Duration,
no_proto: bool,
}
impl<B: AsRef<[u8]> + 'static> Http<B> {
/// Creates a new instance of the HTTP protocol, ready to spawn a server or
/// start accepting connections.
pub fn new() -> Http<B> {
Http {
keep_alive: true,
pipeline: false,
_marker: PhantomData,
}
}
/// Enables or disables HTTP keep-alive.
///
/// Default is true.
pub fn keep_alive(&mut self, val: bool) -> &mut Self {
self.keep_alive = val;
self
}
/// Aggregates flushes to better support pipelined responses.
///
/// Experimental, may be have bugs.
///
/// Default is false.
pub fn pipeline(&mut self, enabled: bool) -> &mut Self {
self.pipeline = enabled;
self
}
/// Bind the provided `addr` and return a server ready to handle
/// connections.
///
/// This method will bind the `addr` provided with a new TCP listener ready
/// to accept connections. Each connection will be processed with the
/// `new_service` object provided as well, creating a new service per
/// connection.
///
/// The returned `Server` contains one method, `run`, which is used to
/// actually run the server.
pub fn bind<S, Bd>(&self, addr: &SocketAddr, new_service: S) -> ::Result<Server<S, Bd>>
where S: NewService<Request = Request, Response = Response<Bd>, Error = ::Error> + 'static,
Bd: Stream<Item=B, Error=::Error>,
{
let core = try!(Core::new());
let handle = core.handle();
let listener = try!(TcpListener::bind(addr, &handle));
Ok(Server {
new_service: new_service,
core: core,
listener: listener,
protocol: self.clone(),
shutdown_timeout: Duration::new(1, 0),
no_proto: false,
})
}
/// Bind a `NewService` using types from the `http` crate.
///
/// See `Http::bind`.
#[cfg(feature = "compat")]
pub fn bind_compat<S, Bd>(&self, addr: &SocketAddr, new_service: S) -> ::Result<Server<compat::NewCompatService<S>, Bd>>
where S: NewService<Request = http::Request<Body>, Response = http::Response<Bd>, Error = ::Error> +
Send + Sync + 'static,
Bd: Stream<Item=B, Error=::Error>,
{
self.bind(addr, self::compat_impl::new_service(new_service))
}
/// Use this `Http` instance to create a new server task which handles the
/// connection `io` provided.
///
/// This is the low-level method used to actually spawn handling a TCP
/// connection, typically. The `handle` provided is the event loop on which
/// the server task will be spawned, `io` is the I/O object associated with
/// this connection (data that's read/written), `remote_addr` is the remote
/// peer address of the HTTP client, and `service` defines how HTTP requests
/// will be handled (and mapped to responses).
///
/// This method is typically not invoked directly but is rather transitively
/// used through [`bind`](#method.bind). This can be useful,
/// however, when writing mocks or accepting sockets from a non-TCP
/// location.
pub fn bind_connection<S, I, Bd>(&self,
handle: &Handle,
io: I,
remote_addr: SocketAddr,
service: S)
where S: Service<Request = Request, Response = Response<Bd>, Error = ::Error> + 'static,
Bd: Stream<Item=B, Error=::Error> + 'static,
I: AsyncRead + AsyncWrite + 'static,
{
self.bind_server(handle, io, HttpService {
inner: service,
remote_addr: remote_addr,
})
}
/// Bind a connection together with a Service.
///
/// This returns a Future that must be polled in order for HTTP to be
/// driven on the connection.
///
/// This additionally skips the tokio-proto infrastructure internally.
pub fn no_proto<S, I, Bd>(&self, io: I, service: S) -> Connection<I, Bd, S>
where S: Service<Request = Request, Response = Response<Bd>, Error = ::Error> + 'static,
Bd: Stream<Item=B, Error=::Error> + 'static,
I: AsyncRead + AsyncWrite + 'static,
{
let ka = if self.keep_alive {
proto::KA::Busy
} else {
proto::KA::Disabled
};
let mut conn = proto::Conn::new(io, ka);
conn.set_flush_pipeline(self.pipeline);
Connection {
conn: proto::dispatch::Dispatcher::new(proto::dispatch::Server::new(service), conn),
}
}
/// Bind a `Service` using types from the `http` crate.
///
/// See `Http::bind_connection`.
#[cfg(feature = "compat")]
pub fn bind_connection_compat<S, I, Bd>(&self,
handle: &Handle,
io: I,
remote_addr: SocketAddr,
service: S)
where S: Service<Request = http::Request<Body>, Response = http::Response<Bd>, Error = ::Error> + 'static,
Bd: Stream<Item=B, Error=::Error> + 'static,
I: AsyncRead + AsyncWrite + 'static,
{
self.bind_server(handle, io, HttpService {
inner: compat_impl::service(service),
remote_addr: remote_addr,
})
}
}
/// A future binding a connection with a Service.
///
/// Polling this future will drive HTTP forward.
#[must_use = "futures do nothing unless polled"]
pub struct Connection<I, B, S>
where S: Service,
B: Stream<Error=::Error>,
B::Item: AsRef<[u8]>,
{
conn: proto::dispatch::Dispatcher<proto::dispatch::Server<S>, B, I, B::Item, proto::ServerTransaction, proto::KA>,
}
impl<I, B, S> Future for Connection<I, B, S>
where S: Service<Request = Request, Response = Response<B>, Error = ::Error> + 'static,
I: AsyncRead + AsyncWrite + 'static,
B: Stream<Error=::Error> + 'static,
B::Item: AsRef<[u8]>,
{
type Item = self::unnameable::Opaque;
type Error = ::Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
try_ready!(self.conn.poll());
Ok(self::unnameable::opaque().into())
}
}
impl<I, B, S> fmt::Debug for Connection<I, B, S>
where S: Service,
B: Stream<Error=::Error>,
B::Item: AsRef<[u8]>,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Connection")
.finish()
}
}
mod unnameable {
// This type is specifically not exported outside the crate,
// so no one can actually name the type. With no methods, we make no
// promises about this type.
//
// All of that to say we can eventually replace the type returned
// to something else, and it would not be a breaking change.
//
// We may want to eventually yield the `T: AsyncRead + AsyncWrite`, which
// doesn't have a `Debug` bound. So, this type can't implement `Debug`
// either, so the type change doesn't break people.
#[allow(missing_debug_implementations)]
pub struct Opaque {
_inner: (),
}
pub fn opaque() -> Opaque {
Opaque {
_inner: (),
}
}
}
impl<B> Clone for Http<B> {
fn clone(&self) -> Http<B> {
Http {
..*self
}
}
}
impl<B> fmt::Debug for Http<B> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Http")
.field("keep_alive", &self.keep_alive)
.field("pipeline", &self.pipeline)
.finish()
}
}
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct __ProtoRequest(proto::RequestHead);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct __ProtoResponse(proto::MessageHead<::StatusCode>);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct __ProtoTransport<T, B>(proto::Conn<T, B, proto::ServerTransaction>);
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub struct __ProtoBindTransport<T, B> {
inner: future::FutureResult<proto::Conn<T, B, proto::ServerTransaction>, io::Error>,
}
impl<T, B> ServerProto<T> for Http<B>
where T: AsyncRead + AsyncWrite + 'static,
B: AsRef<[u8]> + 'static,
{
type Request = __ProtoRequest;
type RequestBody = proto::Chunk;
type Response = __ProtoResponse;
type ResponseBody = B;
type Error = ::Error;
type Transport = __ProtoTransport<T, B>;
type BindTransport = __ProtoBindTransport<T, B>;
#[inline]
fn bind_transport(&self, io: T) -> Self::BindTransport {
let ka = if self.keep_alive {
proto::KA::Busy
} else {
proto::KA::Disabled
};
let mut conn = proto::Conn::new(io, ka);
conn.set_flush_pipeline(self.pipeline);
__ProtoBindTransport {
inner: future::ok(conn),
}
}
}
impl<T, B> Sink for __ProtoTransport<T, B>
where T: AsyncRead + AsyncWrite + 'static,
B: AsRef<[u8]> + 'static,
{
type SinkItem = Frame<__ProtoResponse, B, ::Error>;
type SinkError = io::Error;
#[inline]
fn start_send(&mut self, item: Self::SinkItem)
-> StartSend<Self::SinkItem, io::Error> {
let item = match item {
Frame::Message { message, body } => {
Frame::Message { message: message.0, body: body }
}
Frame::Body { chunk } => Frame::Body { chunk: chunk },
Frame::Error { error } => Frame::Error { error: error },
};
match try!(self.0.start_send(item)) {
AsyncSink::Ready => Ok(AsyncSink::Ready),
AsyncSink::NotReady(Frame::Message { message, body }) => {
Ok(AsyncSink::NotReady(Frame::Message {
message: __ProtoResponse(message),
body: body,
}))
}
AsyncSink::NotReady(Frame::Body { chunk }) => {
Ok(AsyncSink::NotReady(Frame::Body { chunk: chunk }))
}
AsyncSink::NotReady(Frame::Error { error }) => {
Ok(AsyncSink::NotReady(Frame::Error { error: error }))
}
}
}
#[inline]
fn poll_complete(&mut self) -> Poll<(), io::Error> {
self.0.poll_complete()
}
#[inline]
fn close(&mut self) -> Poll<(), io::Error> {
self.0.close()
}
}
impl<T, B> Stream for __ProtoTransport<T, B>
where T: AsyncRead + AsyncWrite + 'static,
B: AsRef<[u8]> + 'static,
{
type Item = Frame<__ProtoRequest, proto::Chunk, ::Error>;
type Error = io::Error;
#[inline]
fn poll(&mut self) -> Poll<Option<Self::Item>, io::Error> {
let item = match try_ready!(self.0.poll()) {
Some(item) => item,
None => return Ok(None.into()),
};
let item = match item {
Frame::Message { message, body } => {
Frame::Message { message: __ProtoRequest(message), body: body }
}
Frame::Body { chunk } => Frame::Body { chunk: chunk },
Frame::Error { error } => Frame::Error { error: error },
};
Ok(Some(item).into())
}
}
impl<T, B> Transport for __ProtoTransport<T, B>
where T: AsyncRead + AsyncWrite + 'static,
B: AsRef<[u8]> + 'static,
{
#[inline]
fn tick(&mut self) {
self.0.tick()
}
#[inline]
fn cancel(&mut self) -> io::Result<()> {
self.0.cancel()
}
}
impl<T, B> Future for __ProtoBindTransport<T, B>
where T: AsyncRead + AsyncWrite + 'static,
{
type Item = __ProtoTransport<T, B>;
type Error = io::Error;
#[inline]
fn poll(&mut self) -> Poll<__ProtoTransport<T, B>, io::Error> {
self.inner.poll().map(|a| a.map(__ProtoTransport))
}
}
impl From<Message<__ProtoRequest, proto::TokioBody>> for Request {
#[inline]
fn from(message: Message<__ProtoRequest, proto::TokioBody>) -> Request {
let (head, body) = match message {
Message::WithoutBody(head) => (head.0, proto::Body::empty()),
Message::WithBody(head, body) => (head.0, body.into()),
};
request::from_wire(None, head, body)
}
}
impl<B> Into<Message<__ProtoResponse, B>> for Response<B> {
#[inline]
fn into(self) -> Message<__ProtoResponse, B> {
let (head, body) = response::split(self);
if let Some(body) = body {
Message::WithBody(__ProtoResponse(head), body.into())
} else {
Message::WithoutBody(__ProtoResponse(head))
}
}
}
struct HttpService<T> {
inner: T,
remote_addr: SocketAddr,
}
impl<T, B> Service for HttpService<T>
where T: Service<Request=Request, Response=Response<B>, Error=::Error>,
B: Stream<Error=::Error>,
B::Item: AsRef<[u8]>,
{
type Request = Message<__ProtoRequest, proto::TokioBody>;
type Response = Message<__ProtoResponse, B>;
type Error = ::Error;
type Future = Map<T::Future, fn(Response<B>) -> Message<__ProtoResponse, B>>;
#[inline]
fn call(&self, message: Self::Request) -> Self::Future {
let (head, body) = match message {
Message::WithoutBody(head) => (head.0, proto::Body::empty()),
Message::WithBody(head, body) => (head.0, body.into()),
};
let req = request::from_wire(Some(self.remote_addr), head, body);
self.inner.call(req).map(Into::into)
}
}
impl<S, B> Server<S, B>
where S: NewService<Request = Request, Response = Response<B>, Error = ::Error> + 'static,
B: Stream<Error=::Error> + 'static,
B::Item: AsRef<[u8]>,
{
/// Returns the local address that this server is bound to.
pub fn local_addr(&self) -> ::Result<SocketAddr> {
Ok(try!(self.listener.local_addr()))
}
/// Returns a handle to the underlying event loop that this server will be
/// running on.
pub fn handle(&self) -> Handle {
self.core.handle()
}
/// Configure the amount of time this server will wait for a "graceful
/// shutdown".
///
/// This is the amount of time after the shutdown signal is received the
/// server will wait for all pending connections to finish. If the timeout
/// elapses then the server will be forcibly shut down.
///
/// This defaults to 1s.
pub fn shutdown_timeout(&mut self, timeout: Duration) -> &mut Self {
self.shutdown_timeout = timeout;
self
}
/// Configure this server to not use tokio-proto infrastructure internally.
pub fn no_proto(&mut self) -> &mut Self {
self.no_proto = true;
self
}
/// Execute this server infinitely.
///
/// This method does not currently return, but it will return an error if
/// one occurs.
pub fn run(self) -> ::Result<()> {
self.run_until(future::empty())
}
/// Execute this server until the given future, `shutdown_signal`, resolves.
///
/// This method, like `run` above, is used to execute this HTTP server. The
/// difference with `run`, however, is that this method allows for shutdown
/// in a graceful fashion. The future provided is interpreted as a signal to
/// shut down the server when it resolves.
///
/// This method will block the current thread executing the HTTP server.
/// When the `shutdown_signal` has resolved then the TCP listener will be
/// unbound (dropped). The thread will continue to block for a maximum of
/// `shutdown_timeout` time waiting for active connections to shut down.
/// Once the `shutdown_timeout` elapses or all active connections are
/// cleaned out then this method will return.
pub fn run_until<F>(self, shutdown_signal: F) -> ::Result<()>
where F: Future<Item = (), Error = ()>,
{
let Server { protocol, new_service, mut core, listener, shutdown_timeout, no_proto } = self;
let handle = core.handle();
// Mini future to track the number of active services
let info = Rc::new(RefCell::new(Info {
active: 0,
blocker: None,
}));
// Future for our server's execution
let srv = listener.incoming().for_each(|(socket, addr)| {
let s = NotifyService {
inner: try!(new_service.new_service()),
info: Rc::downgrade(&info),
};
info.borrow_mut().active += 1;
if no_proto {
let fut = protocol.no_proto(socket, s)
.map(|_| ())
.map_err(|err| error!("no_proto error: {}", err));
handle.spawn(fut);
} else {
protocol.bind_connection(&handle, socket, addr, s);
}
Ok(())
});
// for now, we don't care if the shutdown signal succeeds or errors
// as long as it resolves, we will shutdown.
let shutdown_signal = shutdown_signal.then(|_| Ok(()));
// Main execution of the server. Here we use `select` to wait for either
// `incoming` or `f` to resolve. We know that `incoming` will never
// resolve with a success (it's infinite) so we're actually just waiting
// for an error or for `f`, our shutdown signal.
//
// When we get a shutdown signal (`Ok`) then we drop the TCP listener to
// stop accepting incoming connections.
match core.run(shutdown_signal.select(srv)) {
Ok(((), _incoming)) => {}
Err((e, _other)) => return Err(e.into()),
}
// Ok we've stopped accepting new connections at this point, but we want
// to give existing connections a chance to clear themselves out. Wait
// at most `shutdown_timeout` time before we just return clearing
// everything out.
//
// Our custom `WaitUntilZero` will resolve once all services constructed
// here have been destroyed.
let timeout = try!(Timeout::new(shutdown_timeout, &handle));
let wait = WaitUntilZero { info: info.clone() };
match core.run(wait.select(timeout)) {
Ok(_) => Ok(()),
Err((e, _)) => Err(e.into())
}
}
}
impl<S: fmt::Debug, B: Stream<Error=::Error>> fmt::Debug for Server<S, B>
where B::Item: AsRef<[u8]>
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Server")
.field("core", &"...")
.field("listener", &self.listener)
.field("new_service", &self.new_service)
.field("protocol", &self.protocol)
.finish()
}
}
struct NotifyService<S> {
inner: S,
info: Weak<RefCell<Info>>,
}
struct WaitUntilZero {
info: Rc<RefCell<Info>>,
}
struct Info {
active: usize,
blocker: Option<Task>,
}
impl<S: Service> Service for NotifyService<S> {
type Request = S::Request;
type Response = S::Response;
type Error = S::Error;
type Future = S::Future;
fn call(&self, message: Self::Request) -> Self::Future {
self.inner.call(message)
}
}
impl<S> Drop for NotifyService<S> {
fn drop(&mut self) {
let info = match self.info.upgrade() {
Some(info) => info,
None => return,
};
let mut info = info.borrow_mut();
info.active -= 1;
if info.active == 0 {
if let Some(task) = info.blocker.take() {
task.notify();
}
}
}
}
impl Future for WaitUntilZero {
type Item = ();
type Error = io::Error;
fn poll(&mut self) -> Poll<(), io::Error> {
let mut info = self.info.borrow_mut();
if info.active == 0 {
Ok(().into())
} else {
info.blocker = Some(task::current());
Ok(Async::NotReady)
}
}
}