Files
hyper/examples/upgrades.rs
Sean McArthur 0c8ee93d7f feat(client,server): remove tcp feature and code (#2929)
This removes the `tcp` feature from hyper's `Cargo.toml`, and the code it enabled:

- `HttpConnector`
- `GaiResolver`
- `AddrStream`

And parts of `Client` and `Server` that used those types. Alternatives will be available in the `hyper-util` crate.

Closes #2856 
Co-authored-by: MrGunflame <mrgunflame@protonmail.com>
2022-07-29 10:07:09 -07:00

188 lines
6.3 KiB
Rust

#![deny(warnings)]
// Note: `hyper::upgrade` docs link to this upgrade.
use std::str;
use hyper::server::conn::Http;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::{TcpListener, TcpStream};
use tokio::sync::watch;
use hyper::header::{HeaderValue, UPGRADE};
use hyper::service::service_fn;
use hyper::upgrade::Upgraded;
use hyper::{Body, Request, Response, StatusCode};
use std::net::SocketAddr;
// A simple type alias so as to DRY.
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
/// Handle server-side I/O after HTTP upgraded.
async fn server_upgraded_io(mut upgraded: Upgraded) -> Result<()> {
// we have an upgraded connection that we can read and
// write on directly.
//
// since we completely control this example, we know exactly
// how many bytes the client will write, so just read exact...
let mut vec = vec![0; 7];
upgraded.read_exact(&mut vec).await?;
println!("server[foobar] recv: {:?}", str::from_utf8(&vec));
// and now write back the server 'foobar' protocol's
// response...
upgraded.write_all(b"barr=foo").await?;
println!("server[foobar] sent");
Ok(())
}
/// Our server HTTP handler to initiate HTTP upgrades.
async fn server_upgrade(mut req: Request<Body>) -> Result<Response<Body>> {
let mut res = Response::new(Body::empty());
// Send a 400 to any request that doesn't have
// an `Upgrade` header.
if !req.headers().contains_key(UPGRADE) {
*res.status_mut() = StatusCode::BAD_REQUEST;
return Ok(res);
}
// Setup a future that will eventually receive the upgraded
// connection and talk a new protocol, and spawn the future
// into the runtime.
//
// Note: This can't possibly be fulfilled until the 101 response
// is returned below, so it's better to spawn this future instead
// waiting for it to complete to then return a response.
tokio::task::spawn(async move {
match hyper::upgrade::on(&mut req).await {
Ok(upgraded) => {
if let Err(e) = server_upgraded_io(upgraded).await {
eprintln!("server foobar io error: {}", e)
};
}
Err(e) => eprintln!("upgrade error: {}", e),
}
});
// Now return a 101 Response saying we agree to the upgrade to some
// made-up 'foobar' protocol.
*res.status_mut() = StatusCode::SWITCHING_PROTOCOLS;
res.headers_mut()
.insert(UPGRADE, HeaderValue::from_static("foobar"));
Ok(res)
}
/// Handle client-side I/O after HTTP upgraded.
async fn client_upgraded_io(mut upgraded: Upgraded) -> Result<()> {
// We've gotten an upgraded connection that we can read
// and write directly on. Let's start out 'foobar' protocol.
upgraded.write_all(b"foo=bar").await?;
println!("client[foobar] sent");
let mut vec = Vec::new();
upgraded.read_to_end(&mut vec).await?;
println!("client[foobar] recv: {:?}", str::from_utf8(&vec));
Ok(())
}
/// Our client HTTP handler to initiate HTTP upgrades.
async fn client_upgrade_request(addr: SocketAddr) -> Result<()> {
let req = Request::builder()
.uri(format!("http://{}/", addr))
.header(UPGRADE, "foobar")
.body(Body::empty())
.unwrap();
let stream = TcpStream::connect(addr).await?;
let (mut sender, conn) = hyper::client::conn::handshake(stream).await?;
tokio::task::spawn(async move {
if let Err(err) = conn.await {
println!("Connection failed: {:?}", err);
}
});
let res = sender.send_request(req).await?;
if res.status() != StatusCode::SWITCHING_PROTOCOLS {
panic!("Our server didn't upgrade: {}", res.status());
}
match hyper::upgrade::on(res).await {
Ok(upgraded) => {
if let Err(e) = client_upgraded_io(upgraded).await {
eprintln!("client foobar io error: {}", e)
};
}
Err(e) => eprintln!("upgrade error: {}", e),
}
Ok(())
}
#[tokio::main]
async fn main() {
// For this example, we just make a server and our own client to talk to
// it, so the exact port isn't important. Instead, let the OS give us an
// unused port.
let addr: SocketAddr = ([127, 0, 0, 1], 0).into();
let listener = TcpListener::bind(addr).await.expect("failed to bind");
// We need the assigned address for the client to send it messages.
let addr = listener.local_addr().unwrap();
// For this example, a oneshot is used to signal that after 1 request,
// the server should be shutdown.
let (tx, mut rx) = watch::channel(false);
// Spawn server on the default executor,
// which is usually a thread-pool from tokio default runtime.
tokio::task::spawn(async move {
loop {
tokio::select! {
res = listener.accept() => {
let (stream, _) = res.expect("Failed to accept");
let mut rx = rx.clone();
tokio::task::spawn(async move {
let conn = Http::new().serve_connection(stream, service_fn(server_upgrade));
// Don't forget to enable upgrades on the connection.
let mut conn = conn.with_upgrades();
let mut conn = Pin::new(&mut conn);
tokio::select! {
res = &mut conn => {
if let Err(err) = res {
println!("Error serving connection: {:?}", err);
return;
}
}
// Continue polling the connection after enabling graceful shutdown.
_ = rx.changed() => {
conn.graceful_shutdown();
}
}
});
}
_ = rx.changed() => {
break;
}
}
}
});
// Client requests a HTTP connection upgrade.
let request = client_upgrade_request(addr.clone());
if let Err(e) = request.await {
eprintln!("client error: {}", e);
}
// Complete the oneshot so that the server stops
// listening and the process can close down.
let _ = tx.send(true);
}