Files
hyper/src/http/io.rs

363 lines
9.9 KiB
Rust

use std::cmp;
use std::fmt;
use std::io::{self, Write};
use std::ptr;
use tokio_io::{AsyncRead, AsyncWrite};
use http::{Http1Transaction, MessageHead, DebugTruncate};
use bytes::{BytesMut, Bytes};
const INIT_BUFFER_SIZE: usize = 8192;
pub const MAX_BUFFER_SIZE: usize = 8192 + 4096 * 100;
pub struct Buffered<T> {
io: T,
read_blocked: bool,
read_buf: BytesMut,
write_buf: WriteBuf,
}
impl<T> fmt::Debug for Buffered<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Buffered")
.field("read_buf", &self.read_buf)
.field("write_buf", &self.write_buf)
.finish()
}
}
impl<T: AsyncRead + AsyncWrite> Buffered<T> {
pub fn new(io: T) -> Buffered<T> {
Buffered {
io: io,
read_buf: BytesMut::with_capacity(0),
write_buf: WriteBuf::new(),
read_blocked: false,
}
}
pub fn read_buf(&self) -> &[u8] {
self.read_buf.as_ref()
}
pub fn consume_leading_lines(&mut self) {
if !self.read_buf.is_empty() {
let mut i = 0;
while i < self.read_buf.len() {
match self.read_buf[i] {
b'\r' | b'\n' => i += 1,
_ => break,
}
}
self.read_buf.split_to(i);
}
}
pub fn parse<S: Http1Transaction>(&mut self) -> ::Result<Option<MessageHead<S::Incoming>>> {
loop {
match try!(S::parse(&mut self.read_buf)) {
Some(head) => {
//trace!("parsed {} bytes out of {}", len, self.read_buf.len());
return Ok(Some(head.0))
},
None => {
if self.read_buf.capacity() >= MAX_BUFFER_SIZE {
debug!("MAX_BUFFER_SIZE reached, closing");
return Err(::Error::TooLarge);
}
},
}
match self.read_from_io() {
Ok(0) => {
trace!("parse eof");
//TODO: With Rust 1.14, this can be Error::from(ErrorKind)
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, ParseEof).into());
}
Ok(_) => {},
Err(e) => match e.kind() {
io::ErrorKind::WouldBlock => {
return Ok(None);
},
_ => return Err(e.into())
}
}
}
}
fn read_from_io(&mut self) -> io::Result<usize> {
use bytes::BufMut;
// TODO: Investigate if we still need these unsafe blocks
if self.read_buf.remaining_mut() < INIT_BUFFER_SIZE {
self.read_buf.reserve(INIT_BUFFER_SIZE);
unsafe { // Zero out unused memory
let buf = self.read_buf.bytes_mut();
let len = buf.len();
ptr::write_bytes(buf.as_mut_ptr(), 0, len);
}
}
self.read_blocked = false;
unsafe { // Can we use AsyncRead::read_buf instead?
let n = match self.io.read(self.read_buf.bytes_mut()) {
Ok(n) => n,
Err(e) => {
if e.kind() == io::ErrorKind::WouldBlock {
self.read_blocked = true;
}
return Err(e)
}
};
self.read_buf.advance_mut(n);
Ok(n)
}
}
pub fn buffer<B: AsRef<[u8]>>(&mut self, buf: B) -> usize {
self.write_buf.buffer(buf.as_ref())
}
pub fn io_mut(&mut self) -> &mut T {
&mut self.io
}
pub fn is_read_blocked(&self) -> bool {
self.read_blocked
}
}
impl<T: Write> Write for Buffered<T> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
Ok(self.write_buf.buffer(data))
}
fn flush(&mut self) -> io::Result<()> {
if self.write_buf.remaining() == 0 {
self.io.flush()
} else {
loop {
let n = try!(self.write_buf.write_into(&mut self.io));
debug!("flushed {} bytes", n);
if self.write_buf.remaining() == 0 {
break;
}
}
self.io.flush()
}
}
}
pub trait MemRead {
fn read_mem(&mut self, len: usize) -> io::Result<Bytes>;
}
impl<T: AsyncRead + AsyncWrite> MemRead for Buffered<T> {
fn read_mem(&mut self, len: usize) -> io::Result<Bytes> {
trace!("Buffered.read_mem read_buf={}, wanted={}", self.read_buf.len(), len);
if !self.read_buf.is_empty() {
let n = ::std::cmp::min(len, self.read_buf.len());
trace!("Buffered.read_mem read_buf is not empty, slicing {}", n);
Ok(self.read_buf.split_to(n).freeze())
} else {
let n = try!(self.read_from_io());
Ok(self.read_buf.split_to(::std::cmp::min(len, n)).freeze())
}
}
}
#[derive(Clone)]
pub struct Cursor<T> {
bytes: T,
pos: usize,
}
impl<T: AsRef<[u8]>> Cursor<T> {
pub fn new(bytes: T) -> Cursor<T> {
Cursor {
bytes: bytes,
pos: 0,
}
}
pub fn is_written(&self) -> bool {
trace!("Cursor::is_written pos = {}, len = {}", self.pos, self.bytes.as_ref().len());
self.pos >= self.bytes.as_ref().len()
}
pub fn write_to<W: Write>(&mut self, dst: &mut W) -> io::Result<usize> {
if self.remaining() == 0 {
Ok(0)
} else {
dst.write(&self.bytes.as_ref()[self.pos..]).map(|n| {
self.pos += n;
n
})
}
}
fn remaining(&self) -> usize {
self.bytes.as_ref().len() - self.pos
}
#[inline]
pub fn buf(&self) -> &[u8] {
&self.bytes.as_ref()[self.pos..]
}
#[inline]
pub fn consume(&mut self, num: usize) {
trace!("Cursor::consume({})", num);
self.pos = ::std::cmp::min(self.bytes.as_ref().len(), self.pos + num);
}
}
impl<T: AsRef<[u8]>> fmt::Debug for Cursor<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Cursor")
.field(&DebugTruncate(self.buf()))
.finish()
}
}
pub trait AtomicWrite {
fn write_atomic(&mut self, data: &[&[u8]]) -> io::Result<usize>;
}
/*
#[cfg(not(windows))]
impl<T: Write + ::vecio::Writev> AtomicWrite for T {
fn write_atomic(&mut self, bufs: &[&[u8]]) -> io::Result<usize> {
self.writev(bufs)
}
}
#[cfg(windows)]
*/
impl<T: Write> AtomicWrite for T {
fn write_atomic(&mut self, bufs: &[&[u8]]) -> io::Result<usize> {
if bufs.len() == 1 {
self.write(bufs[0])
} else {
let vec = bufs.concat();
self.write(&vec)
}
}
}
//}
// an internal buffer to collect writes before flushes
#[derive(Debug)]
struct WriteBuf(Cursor<Vec<u8>>);
impl WriteBuf {
fn new() -> WriteBuf {
WriteBuf(Cursor::new(Vec::new()))
}
fn write_into<W: Write>(&mut self, w: &mut W) -> io::Result<usize> {
self.0.write_to(w)
}
fn buffer(&mut self, data: &[u8]) -> usize {
trace!("WriteBuf::buffer() len = {:?}", data.len());
self.maybe_reset();
self.maybe_reserve(data.len());
let mut vec = &mut self.0.bytes;
let len = cmp::min(vec.capacity() - vec.len(), data.len());
assert!(vec.capacity() - vec.len() >= len);
unsafe {
// in rust 1.9, we could use slice::copy_from_slice
ptr::copy(
data.as_ptr(),
vec.as_mut_ptr().offset(vec.len() as isize),
len
);
let new_len = vec.len() + len;
vec.set_len(new_len);
}
len
}
fn remaining(&self) -> usize {
self.0.remaining()
}
#[inline]
fn maybe_reserve(&mut self, needed: usize) {
let mut vec = &mut self.0.bytes;
let cap = vec.capacity();
if cap == 0 {
let init = cmp::min(MAX_BUFFER_SIZE, cmp::max(INIT_BUFFER_SIZE, needed));
trace!("WriteBuf reserving initial {}", init);
vec.reserve(init);
} else if cap < MAX_BUFFER_SIZE {
vec.reserve(cmp::min(needed, MAX_BUFFER_SIZE - cap));
trace!("WriteBuf reserved {}", vec.capacity() - cap);
}
}
fn maybe_reset(&mut self) {
if self.0.pos != 0 && self.0.remaining() == 0 {
self.0.pos = 0;
unsafe {
self.0.bytes.set_len(0);
}
}
}
}
#[derive(Debug)]
struct ParseEof;
impl fmt::Display for ParseEof {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("parse eof")
}
}
impl ::std::error::Error for ParseEof {
fn description(&self) -> &str {
"parse eof"
}
}
#[cfg(test)]
use std::io::Read;
#[cfg(test)]
impl<T: Read> MemRead for ::mock::AsyncIo<T> {
fn read_mem(&mut self, len: usize) -> io::Result<Bytes> {
let mut v = vec![0; len];
let n = try!(self.read(v.as_mut_slice()));
Ok(BytesMut::from(&v[..n]).freeze())
}
}
#[test]
fn test_iobuf_write_empty_slice() {
use mock::{AsyncIo, Buf as MockBuf};
let mut mock = AsyncIo::new(MockBuf::new(), 256);
mock.error(io::Error::new(io::ErrorKind::Other, "logic error"));
let mut io_buf = Buffered::new(mock);
// underlying io will return the logic error upon write,
// so we are testing that the io_buf does not trigger a write
// when there is nothing to flush
io_buf.flush().expect("should short-circuit flush");
}
#[test]
fn test_parse_reads_until_blocked() {
use mock::{AsyncIo, Buf as MockBuf};
// missing last line ending
let raw = "HTTP/1.1 200 OK\r\n";
let mock = AsyncIo::new(MockBuf::wrap(raw.into()), raw.len());
let mut buffered = Buffered::new(mock);
assert_eq!(buffered.parse::<super::ClientTransaction>().unwrap(), None);
assert!(buffered.io.blocked());
}