Files
hyper/src/http/io.rs
2017-01-16 18:56:36 -08:00

322 lines
8.5 KiB
Rust

use std::cmp;
use std::fmt;
use std::io::{self, Read, Write};
use std::ptr;
use futures::Async;
use tokio::io::Io;
use http::{Http1Transaction, h1, MessageHead, ParseResult};
use http::buf::{MemBuf, MemSlice};
const INIT_BUFFER_SIZE: usize = 4096;
pub const MAX_BUFFER_SIZE: usize = 8192 + 4096 * 100;
pub struct Buffered<T> {
io: T,
read_buf: MemBuf,
write_buf: WriteBuf,
}
impl<T> fmt::Debug for Buffered<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Buffered")
.field("read_buf", &self.read_buf)
.field("write_buf", &self.write_buf)
.finish()
}
}
impl<T: Io> Buffered<T> {
pub fn new(io: T) -> Buffered<T> {
Buffered {
io: io,
read_buf: MemBuf::new(),
write_buf: WriteBuf::new(),
}
}
pub fn read_buf(&self) -> &[u8] {
self.read_buf.bytes()
}
pub fn consume_leading_lines(&mut self) {
if !self.read_buf.is_empty() {
let mut i = 0;
while i < self.read_buf.len() {
match self.read_buf.bytes()[i] {
b'\r' | b'\n' => i += 1,
_ => break,
}
}
self.read_buf.slice(i);
}
}
pub fn poll_read(&mut self) -> Async<()> {
self.io.poll_read()
}
pub fn parse<S: Http1Transaction>(&mut self) -> ::Result<Option<MessageHead<S::Incoming>>> {
self.reserve_read_buf();
match self.read_buf.read_from(&mut self.io) {
Ok(0) => {
trace!("parse eof");
return Err(io::Error::new(io::ErrorKind::UnexpectedEof, "parse eof").into());
}
Ok(_) => {},
Err(e) => match e.kind() {
io::ErrorKind::WouldBlock => {},
_ => return Err(e.into())
}
}
match try!(parse::<S, _>(self.read_buf.bytes())) {
Some((head, len)) => {
trace!("parsed {} bytes out of {}", len, self.read_buf.len());
self.read_buf.slice(len);
Ok(Some(head))
},
None => {
if self.read_buf.capacity() >= MAX_BUFFER_SIZE {
debug!("MAX_BUFFER_SIZE reached, closing");
Err(::Error::TooLarge)
} else {
Ok(None)
}
},
}
}
fn reserve_read_buf(&mut self) {
self.read_buf.reserve(INIT_BUFFER_SIZE);
}
pub fn buffer<B: AsRef<[u8]>>(&mut self, buf: B) {
self.write_buf.buffer(buf.as_ref());
}
#[cfg(test)]
pub fn io_mut(&mut self) -> &mut T {
&mut self.io
}
}
/*
impl<T: Read> Read for Buffered<T> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
trace!("Buffered.read self={}, buf={}", self.read_buf.len(), buf.len());
unimplemented!()
/*
let n = try!(self.read_buf.bytes().read(buf));
self.read_buf.consume(n);
if n == 0 {
self.read_buf.reset();
self.io.read(&mut buf[n..])
} else {
Ok(n)
}
*/
}
}
*/
impl<T: Write> Write for Buffered<T> {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
Ok(self.write_buf.buffer(data))
}
fn flush(&mut self) -> io::Result<()> {
self.write_buf.write_into(&mut self.io).and_then(|_n| {
if self.write_buf.remaining() == 0 {
Ok(())
} else {
Err(io::Error::new(io::ErrorKind::WouldBlock, "wouldblock"))
}
})
}
}
fn parse<T: Http1Transaction<Incoming=I>, I>(rdr: &[u8]) -> ParseResult<I> {
h1::parse::<T, I>(rdr)
}
pub trait MemRead {
fn read_mem(&mut self, len: usize) -> io::Result<MemSlice>;
}
impl<T: Read> MemRead for Buffered<T> {
fn read_mem(&mut self, len: usize) -> io::Result<MemSlice> {
trace!("Buffered.read_mem read_buf={}, wanted={}", self.read_buf.len(), len);
if !self.read_buf.is_empty() {
let n = ::std::cmp::min(len, self.read_buf.len());
trace!("Buffered.read_mem read_buf is not empty, slicing {}", n);
Ok(self.read_buf.slice(n))
} else {
self.read_buf.reset();
let n = try!(self.read_buf.read_from(&mut self.io));
Ok(self.read_buf.slice(::std::cmp::min(len, n)))
}
}
}
#[derive(Clone)]
pub struct Cursor<T: AsRef<[u8]>> {
bytes: T,
pos: usize,
}
impl<T: AsRef<[u8]>> Cursor<T> {
pub fn new(bytes: T) -> Cursor<T> {
Cursor {
bytes: bytes,
pos: 0,
}
}
pub fn is_written(&self) -> bool {
trace!("Cursor::is_written pos = {}, len = {}", self.pos, self.bytes.as_ref().len());
self.pos >= self.bytes.as_ref().len()
}
pub fn write_to<W: Write>(&mut self, dst: &mut W) -> io::Result<usize> {
if self.remaining() == 0 {
Ok(0)
} else {
dst.write(&self.bytes.as_ref()[self.pos..]).map(|n| {
self.pos += n;
n
})
}
}
fn remaining(&self) -> usize {
self.bytes.as_ref().len() - self.pos
}
#[inline]
pub fn buf(&self) -> &[u8] {
&self.bytes.as_ref()[self.pos..]
}
#[inline]
pub fn consume(&mut self, num: usize) {
trace!("Cursor::consume({})", num);
self.pos = ::std::cmp::min(self.bytes.as_ref().len(), self.pos + num);
}
}
impl<T: AsRef<[u8]>> fmt::Debug for Cursor<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let bytes = self.buf();
if bytes.len() > 32 {
try!(f.write_str("Cursor(["));
for byte in &bytes[..32] {
try!(write!(f, "{:?}, ", byte));
}
write!(f, "... {}])", bytes.len())
} else {
write!(f, "Cursor({:?})", &bytes)
}
}
}
pub trait AtomicWrite {
fn write_atomic(&mut self, data: &[&[u8]]) -> io::Result<usize>;
}
/*
#[cfg(not(windows))]
impl<T: Write + ::vecio::Writev> AtomicWrite for T {
fn write_atomic(&mut self, bufs: &[&[u8]]) -> io::Result<usize> {
self.writev(bufs)
}
}
#[cfg(windows)]
*/
impl<T: Write> AtomicWrite for T {
fn write_atomic(&mut self, bufs: &[&[u8]]) -> io::Result<usize> {
let vec = bufs.concat();
self.write(&vec)
}
}
//}
// an internal buffer to collect writes before flushes
#[derive(Debug)]
struct WriteBuf(Cursor<Vec<u8>>);
impl WriteBuf {
fn new() -> WriteBuf {
WriteBuf(Cursor::new(Vec::new()))
}
fn write_into<W: Write>(&mut self, w: &mut W) -> io::Result<usize> {
self.0.write_to(w)
}
fn buffer(&mut self, data: &[u8]) -> usize {
trace!("WriteBuf::buffer() len = {:?}", data.len());
self.maybe_reset();
self.maybe_reserve(data.len());
let mut vec = &mut self.0.bytes;
let len = cmp::min(vec.capacity() - vec.len(), data.len());
assert!(vec.capacity() - vec.len() >= len);
unsafe {
// in rust 1.9, we could use slice::copy_from_slice
ptr::copy(
data.as_ptr(),
vec.as_mut_ptr().offset(vec.len() as isize),
len
);
let new_len = vec.len() + len;
vec.set_len(new_len);
}
len
}
fn remaining(&self) -> usize {
self.0.remaining()
}
#[inline]
fn maybe_reserve(&mut self, needed: usize) {
let mut vec = &mut self.0.bytes;
let cap = vec.capacity();
if cap == 0 {
let init = cmp::max(INIT_BUFFER_SIZE, needed);
trace!("WriteBuf reserving initial {}", init);
vec.reserve(init);
} else if cap < MAX_BUFFER_SIZE {
vec.reserve(cmp::min(needed, MAX_BUFFER_SIZE - cap));
trace!("WriteBuf reserved {}", vec.capacity() - cap);
}
}
fn maybe_reset(&mut self) {
if self.0.pos != 0 && self.0.remaining() == 0 {
self.0.pos = 0;
unsafe {
self.0.bytes.set_len(0);
}
}
}
}
#[test]
fn test_iobuf_write_empty_slice() {
use mock::{AsyncIo, Buf as MockBuf};
let mut mock = AsyncIo::new(MockBuf::new(), 256);
mock.error(io::Error::new(io::ErrorKind::Other, "logic error"));
let mut io_buf = Buffered::new(mock);
// underlying io will return the logic error upon write,
// so we are testing that the io_buf does not trigger a write
// when there is nothing to flush
io_buf.flush().expect("should short-circuit flush");
}