#![doc(html_root_url = "https://hyperium.github.io/hyper/")] #![cfg_attr(test, deny(missing_docs))] #![cfg_attr(test, deny(warnings))] #![cfg_attr(all(test, feature = "nightly"), feature(test))] #![cfg_attr(feature = "timeouts", feature(socket_timeout))] //! # Hyper //! //! Hyper is a fast, modern HTTP implementation written in and for Rust. It //! is a low-level typesafe abstraction over raw HTTP, providing an elegant //! layer over "stringly-typed" HTTP. //! //! Hyper offers both a [Client](client/index.html) and a //! [Server](server/index.html) which can be used to drive complex web //! applications written entirely in Rust. //! //! ## Internal Design //! //! Hyper is designed as a relatively low-level wrapper over raw HTTP. It should //! allow the implementation of higher-level abstractions with as little pain as //! possible, and should not irrevocably hide any information from its users. //! //! ### Common Functionality //! //! Functionality and code shared between the Server and Client implementations //! can be found in `src` directly - this includes `NetworkStream`s, `Method`s, //! `StatusCode`, and so on. //! //! #### Methods //! //! Methods are represented as a single `enum` to remain as simple as possible. //! Extension Methods are represented as raw `String`s. A method's safety and //! idempotence can be accessed using the `safe` and `idempotent` methods. //! //! #### StatusCode //! //! Status codes are also represented as a single, exhaustive, `enum`. This //! representation is efficient, typesafe, and ergonomic as it allows the use of //! `match` to disambiguate known status codes. //! //! #### Headers //! //! Hyper's [header](header/index.html) representation is likely the most //! complex API exposed by Hyper. //! //! Hyper's headers are an abstraction over an internal `HashMap` and provides a //! typesafe API for interacting with headers that does not rely on the use of //! "string-typing." //! //! Each HTTP header in Hyper has an associated type and implementation of the //! `Header` trait, which defines an HTTP headers name as a string, how to parse //! that header, and how to format that header. //! //! Headers are then parsed from the string representation lazily when the typed //! representation of a header is requested and formatted back into their string //! representation when headers are written back to the client. //! //! #### NetworkStream and NetworkAcceptor //! //! These are found in `src/net.rs` and define the interface that acceptors and //! streams must fulfill for them to be used within Hyper. They are by and large //! internal tools and you should only need to mess around with them if you want to //! mock or replace `TcpStream` and `TcpAcceptor`. //! //! ### Server //! //! Server-specific functionality, such as `Request` and `Response` //! representations, are found in in `src/server`. //! //! #### Handler + Server //! //! A `Handler` in Hyper accepts a `Request` and `Response`. This is where //! user-code can handle each connection. The server accepts connections in a //! task pool with a customizable number of threads, and passes the Request / //! Response to the handler. //! //! #### Request //! //! An incoming HTTP Request is represented as a struct containing //! a `Reader` over a `NetworkStream`, which represents the body, headers, a remote //! address, an HTTP version, and a `Method` - relatively standard stuff. //! //! `Request` implements `Reader` itself, meaning that you can ergonomically get //! the body out of a `Request` using standard `Reader` methods and helpers. //! //! #### Response //! //! An outgoing HTTP Response is also represented as a struct containing a `Writer` //! over a `NetworkStream` which represents the Response body in addition to //! standard items such as the `StatusCode` and HTTP version. `Response`'s `Writer` //! implementation provides a streaming interface for sending data over to the //! client. //! //! One of the traditional problems with representing outgoing HTTP Responses is //! tracking the write-status of the Response - have we written the status-line, //! the headers, the body, etc.? Hyper tracks this information statically using the //! type system and prevents you, using the type system, from writing headers after //! you have started writing to the body or vice versa. //! //! Hyper does this through a phantom type parameter in the definition of Response, //! which tracks whether you are allowed to write to the headers or the body. This //! phantom type can have two values `Fresh` or `Streaming`, with `Fresh` //! indicating that you can write the headers and `Streaming` indicating that you //! may write to the body, but not the headers. //! //! ### Client //! //! Client-specific functionality, such as `Request` and `Response` //! representations, are found in `src/client`. //! //! #### Request //! //! An outgoing HTTP Request is represented as a struct containing a `Writer` over //! a `NetworkStream` which represents the Request body in addition to the standard //! information such as headers and the request method. //! //! Outgoing Requests track their write-status in almost exactly the same way as //! outgoing HTTP Responses do on the Server, so we will defer to the explanation //! in the documentation for server Response. //! //! Requests expose an efficient streaming interface instead of a builder pattern, //! but they also provide the needed interface for creating a builder pattern over //! the API exposed by core Hyper. //! //! #### Response //! //! Incoming HTTP Responses are represented as a struct containing a `Reader` over //! a `NetworkStream` and contain headers, a status, and an http version. They //! implement `Reader` and can be read to get the data out of a `Response`. //! extern crate rustc_serialize as serialize; extern crate time; extern crate url; #[cfg(feature = "openssl")] extern crate openssl; #[cfg(feature = "serde-serialization")] extern crate serde; extern crate cookie; extern crate unicase; extern crate httparse; extern crate num_cpus; extern crate traitobject; extern crate typeable; extern crate solicit; #[macro_use] extern crate language_tags; #[macro_use] extern crate mime as mime_crate; #[macro_use] extern crate log; #[cfg(all(test, feature = "nightly"))] extern crate test; pub use url::Url; pub use client::Client; pub use error::{Result, Error}; pub use method::Method::{Get, Head, Post, Delete}; pub use status::StatusCode::{Ok, BadRequest, NotFound}; pub use server::Server; pub use language_tags::LanguageTag; macro_rules! todo( ($($arg:tt)*) => (if cfg!(not(ndebug)) { trace!("TODO: {:?}", format_args!($($arg)*)) }) ); macro_rules! inspect( ($name:expr, $value:expr) => ({ let v = $value; trace!("inspect: {:?} = {:?}", $name, v); v }) ); #[cfg(test)] #[macro_use] mod mock; #[doc(hidden)] pub mod buffer; pub mod client; pub mod error; pub mod method; pub mod header; pub mod http; pub mod net; pub mod server; pub mod status; pub mod uri; pub mod version; /// Re-exporting the mime crate, for convenience. pub mod mime { pub use mime_crate::*; } #[allow(unconditional_recursion)] fn _assert_send() { _assert_send::(); _assert_send::>(); _assert_send::(); _assert_send::(); } #[allow(unconditional_recursion)] fn _assert_sync() { _assert_sync::(); _assert_sync::(); }