use std::borrow::Cow; use std::fmt; use std::error::Error as StdError; use std::io; use std::mem; use std::net::{IpAddr, SocketAddr}; use std::time::{Duration, Instant}; use futures::{Async, Future, Poll}; use futures::future::{Executor}; use http::uri::Scheme; use net2::TcpBuilder; use tokio_reactor::Handle; use tokio_tcp::{TcpStream, ConnectFuture}; use tokio_timer::Delay; use super::{Connect, Connected, Destination}; use super::dns::{self, GaiResolver, Resolve, TokioThreadpoolGaiResolver}; /// A connector for the `http` scheme. /// /// Performs DNS resolution in a thread pool, and then connects over TCP. /// /// # Note /// /// Sets the [`HttpInfo`](HttpInfo) value on responses, which includes /// transport information such as the remote socket address used. #[derive(Clone)] pub struct HttpConnector { enforce_http: bool, handle: Option, happy_eyeballs_timeout: Option, keep_alive_timeout: Option, local_address: Option, nodelay: bool, resolver: R, reuse_address: bool, } /// Extra information about the transport when an HttpConnector is used. /// /// # Example /// /// ```rust /// use hyper::client::{Client, connect::HttpInfo}; /// use hyper::rt::Future; /// /// let client = Client::new(); /// /// let fut = client.get("http://example.local".parse().unwrap()) /// .inspect(|resp| { /// resp /// .extensions() /// .get::() /// .map(|info| { /// println!("remote addr = {}", info.remote_addr()); /// }); /// }); /// ``` /// /// # Note /// /// If a different connector is used besides [`HttpConnector`](HttpConnector), /// this value will not exist in the extensions. Consult that specific /// connector to see what "extra" information it might provide to responses. #[derive(Clone, Debug)] pub struct HttpInfo { remote_addr: SocketAddr, } impl HttpConnector { /// Construct a new HttpConnector. /// /// Takes number of DNS worker threads. #[inline] pub fn new(threads: usize) -> HttpConnector { HttpConnector::new_with_resolver(GaiResolver::new(threads)) } #[doc(hidden)] #[deprecated(note = "Use HttpConnector::set_reactor to set a reactor handle")] pub fn new_with_handle(threads: usize, handle: Handle) -> HttpConnector { let resolver = GaiResolver::new(threads); let mut http = HttpConnector::new_with_resolver(resolver); http.set_reactor(Some(handle)); http } /// Construct a new HttpConnector. /// /// Takes an executor to run blocking `getaddrinfo` tasks on. pub fn new_with_executor(executor: E, handle: Option) -> HttpConnector where E: Executor + Send + Sync { let resolver = GaiResolver::new_with_executor(executor); let mut http = HttpConnector::new_with_resolver(resolver); http.set_reactor(handle); http } } impl HttpConnector { /// Construct a new HttpConnector using the `TokioThreadpoolGaiResolver`. /// /// This resolver **requires** the threadpool runtime to be used. pub fn new_with_tokio_threadpool_resolver() -> Self { HttpConnector::new_with_resolver(TokioThreadpoolGaiResolver::new()) } } impl HttpConnector { /// Construct a new HttpConnector. /// /// Takes a `Resolve` to handle DNS lookups. pub fn new_with_resolver(resolver: R) -> HttpConnector { HttpConnector { enforce_http: true, handle: None, happy_eyeballs_timeout: Some(Duration::from_millis(300)), keep_alive_timeout: None, local_address: None, nodelay: false, resolver, reuse_address: false, } } /// Option to enforce all `Uri`s have the `http` scheme. /// /// Enabled by default. #[inline] pub fn enforce_http(&mut self, is_enforced: bool) { self.enforce_http = is_enforced; } /// Set a handle to a `Reactor` to register connections to. /// /// If `None`, the implicit default reactor will be used. #[inline] pub fn set_reactor(&mut self, handle: Option) { self.handle = handle; } /// Set that all sockets have `SO_KEEPALIVE` set with the supplied duration. /// /// If `None`, the option will not be set. /// /// Default is `None`. #[inline] pub fn set_keepalive(&mut self, dur: Option) { self.keep_alive_timeout = dur; } /// Set that all sockets have `SO_NODELAY` set to the supplied value `nodelay`. /// /// Default is `false`. #[inline] pub fn set_nodelay(&mut self, nodelay: bool) { self.nodelay = nodelay; } /// Set that all sockets are bound to the configured address before connection. /// /// If `None`, the sockets will not be bound. /// /// Default is `None`. #[inline] pub fn set_local_address(&mut self, addr: Option) { self.local_address = addr; } /// Set timeout for [RFC 6555 (Happy Eyeballs)][RFC 6555] algorithm. /// /// If hostname resolves to both IPv4 and IPv6 addresses and connection /// cannot be established using preferred address family before timeout /// elapses, then connector will in parallel attempt connection using other /// address family. /// /// If `None`, parallel connection attempts are disabled. /// /// Default is 300 milliseconds. /// /// [RFC 6555]: https://tools.ietf.org/html/rfc6555 #[inline] pub fn set_happy_eyeballs_timeout(&mut self, dur: Option) { self.happy_eyeballs_timeout = dur; } /// Set that all socket have `SO_REUSEADDR` set to the supplied value `reuse_address`. /// /// Default is `false`. #[inline] pub fn set_reuse_address(&mut self, reuse_address: bool) -> &mut Self { self.reuse_address = reuse_address; self } } // R: Debug required for now to allow adding it to debug output later... impl fmt::Debug for HttpConnector { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("HttpConnector") .finish() } } impl Connect for HttpConnector where R: Resolve + Clone + Send + Sync, R::Future: Send, { type Transport = TcpStream; type Error = io::Error; type Future = HttpConnecting; fn connect(&self, dst: Destination) -> Self::Future { trace!( "Http::connect; scheme={}, host={}, port={:?}", dst.scheme(), dst.host(), dst.port(), ); if self.enforce_http { if dst.uri.scheme_part() != Some(&Scheme::HTTP) { return invalid_url(InvalidUrl::NotHttp, &self.handle); } } else if dst.uri.scheme_part().is_none() { return invalid_url(InvalidUrl::MissingScheme, &self.handle); } let host = match dst.uri.host() { Some(s) => s, None => return invalid_url(InvalidUrl::MissingAuthority, &self.handle), }; let port = match dst.uri.port_part() { Some(port) => port.as_u16(), None => if dst.uri.scheme_part() == Some(&Scheme::HTTPS) { 443 } else { 80 }, }; HttpConnecting { state: State::Lazy(self.resolver.clone(), host.into(), self.local_address), handle: self.handle.clone(), happy_eyeballs_timeout: self.happy_eyeballs_timeout, keep_alive_timeout: self.keep_alive_timeout, nodelay: self.nodelay, port, reuse_address: self.reuse_address, } } } impl HttpInfo { /// Get the remote address of the transport used. pub fn remote_addr(&self) -> SocketAddr { self.remote_addr } } #[inline] fn invalid_url(err: InvalidUrl, handle: &Option) -> HttpConnecting { HttpConnecting { state: State::Error(Some(io::Error::new(io::ErrorKind::InvalidInput, err))), handle: handle.clone(), keep_alive_timeout: None, nodelay: false, port: 0, happy_eyeballs_timeout: None, reuse_address: false, } } #[derive(Debug, Clone, Copy)] enum InvalidUrl { MissingScheme, NotHttp, MissingAuthority, } impl fmt::Display for InvalidUrl { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str(self.description()) } } impl StdError for InvalidUrl { fn description(&self) -> &str { match *self { InvalidUrl::MissingScheme => "invalid URL, missing scheme", InvalidUrl::NotHttp => "invalid URL, scheme must be http", InvalidUrl::MissingAuthority => "invalid URL, missing domain", } } } /// A Future representing work to connect to a URL. #[must_use = "futures do nothing unless polled"] pub struct HttpConnecting { state: State, handle: Option, happy_eyeballs_timeout: Option, keep_alive_timeout: Option, nodelay: bool, port: u16, reuse_address: bool, } enum State { Lazy(R, String, Option), Resolving(R::Future, Option), Connecting(ConnectingTcp), Error(Option), } impl Future for HttpConnecting { type Item = (TcpStream, Connected); type Error = io::Error; fn poll(&mut self) -> Poll { loop { let state; match self.state { State::Lazy(ref resolver, ref mut host, local_addr) => { // If the host is already an IP addr (v4 or v6), // skip resolving the dns and start connecting right away. if let Some(addrs) = dns::IpAddrs::try_parse(host, self.port) { state = State::Connecting(ConnectingTcp::new( local_addr, addrs, self.happy_eyeballs_timeout, self.reuse_address)); } else { let name = dns::Name::new(mem::replace(host, String::new())); state = State::Resolving(resolver.resolve(name), local_addr); } }, State::Resolving(ref mut future, local_addr) => { match try!(future.poll()) { Async::NotReady => return Ok(Async::NotReady), Async::Ready(addrs) => { let port = self.port; let addrs = addrs .map(|addr| SocketAddr::new(addr, port)) .collect(); let addrs = dns::IpAddrs::new(addrs); state = State::Connecting(ConnectingTcp::new( local_addr, addrs, self.happy_eyeballs_timeout, self.reuse_address)); } }; }, State::Connecting(ref mut c) => { let sock = try_ready!(c.poll(&self.handle)); if let Some(dur) = self.keep_alive_timeout { sock.set_keepalive(Some(dur))?; } sock.set_nodelay(self.nodelay)?; let extra = HttpInfo { remote_addr: sock.peer_addr()?, }; let connected = Connected::new() .extra(extra); return Ok(Async::Ready((sock, connected))); }, State::Error(ref mut e) => return Err(e.take().expect("polled more than once")), } self.state = state; } } } impl fmt::Debug for HttpConnecting { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad("HttpConnecting") } } struct ConnectingTcp { local_addr: Option, preferred: ConnectingTcpRemote, fallback: Option, reuse_address: bool, } impl ConnectingTcp { fn new( local_addr: Option, remote_addrs: dns::IpAddrs, fallback_timeout: Option, reuse_address: bool, ) -> ConnectingTcp { if let Some(fallback_timeout) = fallback_timeout { let (preferred_addrs, fallback_addrs) = remote_addrs.split_by_preference(); if fallback_addrs.is_empty() { return ConnectingTcp { local_addr, preferred: ConnectingTcpRemote::new(preferred_addrs), fallback: None, reuse_address, }; } ConnectingTcp { local_addr, preferred: ConnectingTcpRemote::new(preferred_addrs), fallback: Some(ConnectingTcpFallback { delay: Delay::new(Instant::now() + fallback_timeout), remote: ConnectingTcpRemote::new(fallback_addrs), }), reuse_address, } } else { ConnectingTcp { local_addr, preferred: ConnectingTcpRemote::new(remote_addrs), fallback: None, reuse_address, } } } } struct ConnectingTcpFallback { delay: Delay, remote: ConnectingTcpRemote, } struct ConnectingTcpRemote { addrs: dns::IpAddrs, current: Option, } impl ConnectingTcpRemote { fn new(addrs: dns::IpAddrs) -> Self { Self { addrs, current: None, } } } impl ConnectingTcpRemote { // not a Future, since passing a &Handle to poll fn poll( &mut self, local_addr: &Option, handle: &Option, reuse_address: bool, ) -> Poll { let mut err = None; loop { if let Some(ref mut current) = self.current { match current.poll() { Ok(ok) => return Ok(ok), Err(e) => { trace!("connect error {:?}", e); err = Some(e); if let Some(addr) = self.addrs.next() { debug!("connecting to {}", addr); *current = connect(&addr, local_addr, handle, reuse_address)?; continue; } } } } else if let Some(addr) = self.addrs.next() { debug!("connecting to {}", addr); self.current = Some(connect(&addr, local_addr, handle, reuse_address)?); continue; } return Err(err.take().expect("missing connect error")); } } } fn connect(addr: &SocketAddr, local_addr: &Option, handle: &Option, reuse_address: bool) -> io::Result { let builder = match addr { &SocketAddr::V4(_) => TcpBuilder::new_v4()?, &SocketAddr::V6(_) => TcpBuilder::new_v6()?, }; if reuse_address { builder.reuse_address(reuse_address)?; } if let Some(ref local_addr) = *local_addr { // Caller has requested this socket be bound before calling connect builder.bind(SocketAddr::new(local_addr.clone(), 0))?; } else if cfg!(windows) { // Windows requires a socket be bound before calling connect let any: SocketAddr = match addr { &SocketAddr::V4(_) => { ([0, 0, 0, 0], 0).into() }, &SocketAddr::V6(_) => { ([0, 0, 0, 0, 0, 0, 0, 0], 0).into() } }; builder.bind(any)?; } let handle = match *handle { Some(ref handle) => Cow::Borrowed(handle), None => Cow::Owned(Handle::current()), }; Ok(TcpStream::connect_std(builder.to_tcp_stream()?, addr, &handle)) } impl ConnectingTcp { // not a Future, since passing a &Handle to poll fn poll(&mut self, handle: &Option) -> Poll { match self.fallback.take() { None => self.preferred.poll(&self.local_addr, handle, self.reuse_address), Some(mut fallback) => match self.preferred.poll(&self.local_addr, handle, self.reuse_address) { Ok(Async::Ready(stream)) => { // Preferred successful - drop fallback. Ok(Async::Ready(stream)) } Ok(Async::NotReady) => match fallback.delay.poll() { Ok(Async::Ready(_)) => match fallback.remote.poll(&self.local_addr, handle, self.reuse_address) { Ok(Async::Ready(stream)) => { // Fallback successful - drop current preferred, // but keep fallback as new preferred. self.preferred = fallback.remote; Ok(Async::Ready(stream)) } Ok(Async::NotReady) => { // Neither preferred nor fallback are ready. self.fallback = Some(fallback); Ok(Async::NotReady) } Err(_) => { // Fallback failed - resume with preferred only. Ok(Async::NotReady) } }, Ok(Async::NotReady) => { // Too early to attempt fallback. self.fallback = Some(fallback); Ok(Async::NotReady) } Err(_) => { // Fallback delay failed - resume with preferred only. Ok(Async::NotReady) } } Err(_) => { // Preferred failed - use fallback as new preferred. self.preferred = fallback.remote; self.preferred.poll(&self.local_addr, handle, self.reuse_address) } } } } } #[cfg(test)] mod tests { use std::io; use futures::Future; use super::{Connect, Destination, HttpConnector}; #[test] fn test_errors_missing_authority() { let uri = "/foo/bar?baz".parse().unwrap(); let dst = Destination { uri, }; let connector = HttpConnector::new(1); assert_eq!(connector.connect(dst).wait().unwrap_err().kind(), io::ErrorKind::InvalidInput); } #[test] fn test_errors_enforce_http() { let uri = "https://example.domain/foo/bar?baz".parse().unwrap(); let dst = Destination { uri, }; let connector = HttpConnector::new(1); assert_eq!(connector.connect(dst).wait().unwrap_err().kind(), io::ErrorKind::InvalidInput); } #[test] fn test_errors_missing_scheme() { let uri = "example.domain".parse().unwrap(); let dst = Destination { uri, }; let connector = HttpConnector::new(1); assert_eq!(connector.connect(dst).wait().unwrap_err().kind(), io::ErrorKind::InvalidInput); } #[test] fn client_happy_eyeballs() { extern crate pretty_env_logger; use std::net::{IpAddr, Ipv4Addr, Ipv6Addr, TcpListener}; use std::time::{Duration, Instant}; use futures::{Async, Poll}; use tokio::runtime::current_thread::Runtime; use tokio_reactor::Handle; use super::dns; use super::ConnectingTcp; let _ = pretty_env_logger::try_init(); let server4 = TcpListener::bind("127.0.0.1:0").unwrap(); let addr = server4.local_addr().unwrap(); let _server6 = TcpListener::bind(&format!("[::1]:{}", addr.port())).unwrap(); let mut rt = Runtime::new().unwrap(); let local_timeout = Duration::default(); let unreachable_v4_timeout = measure_connect(unreachable_ipv4_addr()).1; let unreachable_v6_timeout = measure_connect(unreachable_ipv6_addr()).1; let fallback_timeout = ::std::cmp::max(unreachable_v4_timeout, unreachable_v6_timeout) + Duration::from_millis(250); let scenarios = &[ // Fast primary, without fallback. (&[local_ipv4_addr()][..], 4, local_timeout, false), (&[local_ipv6_addr()][..], 6, local_timeout, false), // Fast primary, with (unused) fallback. (&[local_ipv4_addr(), local_ipv6_addr()][..], 4, local_timeout, false), (&[local_ipv6_addr(), local_ipv4_addr()][..], 6, local_timeout, false), // Unreachable + fast primary, without fallback. (&[unreachable_ipv4_addr(), local_ipv4_addr()][..], 4, unreachable_v4_timeout, false), (&[unreachable_ipv6_addr(), local_ipv6_addr()][..], 6, unreachable_v6_timeout, false), // Unreachable + fast primary, with (unused) fallback. (&[unreachable_ipv4_addr(), local_ipv4_addr(), local_ipv6_addr()][..], 4, unreachable_v4_timeout, false), (&[unreachable_ipv6_addr(), local_ipv6_addr(), local_ipv4_addr()][..], 6, unreachable_v6_timeout, true), // Slow primary, with (used) fallback. (&[slow_ipv4_addr(), local_ipv4_addr(), local_ipv6_addr()][..], 6, fallback_timeout, false), (&[slow_ipv6_addr(), local_ipv6_addr(), local_ipv4_addr()][..], 4, fallback_timeout, true), // Slow primary, with (used) unreachable + fast fallback. (&[slow_ipv4_addr(), unreachable_ipv6_addr(), local_ipv6_addr()][..], 6, fallback_timeout + unreachable_v6_timeout, false), (&[slow_ipv6_addr(), unreachable_ipv4_addr(), local_ipv4_addr()][..], 4, fallback_timeout + unreachable_v4_timeout, true), ]; // Scenarios for IPv6 -> IPv4 fallback require that host can access IPv6 network. // Otherwise, connection to "slow" IPv6 address will error-out immediatelly. let ipv6_accessible = measure_connect(slow_ipv6_addr()).0; for &(hosts, family, timeout, needs_ipv6_access) in scenarios { if needs_ipv6_access && !ipv6_accessible { continue; } let addrs = hosts.iter().map(|host| (host.clone(), addr.port()).into()).collect(); let connecting_tcp = ConnectingTcp::new(None, dns::IpAddrs::new(addrs), Some(fallback_timeout), false); let fut = ConnectingTcpFuture(connecting_tcp); let start = Instant::now(); let res = rt.block_on(fut).unwrap(); let duration = start.elapsed(); // Allow actual duration to be +/- 150ms off. let min_duration = if timeout >= Duration::from_millis(150) { timeout - Duration::from_millis(150) } else { Duration::default() }; let max_duration = timeout + Duration::from_millis(150); assert_eq!(res, family); assert!(duration >= min_duration); assert!(duration <= max_duration); } struct ConnectingTcpFuture(ConnectingTcp); impl Future for ConnectingTcpFuture { type Item = u8; type Error = ::std::io::Error; fn poll(&mut self) -> Poll { match self.0.poll(&Some(Handle::default())) { Ok(Async::Ready(stream)) => Ok(Async::Ready( if stream.peer_addr().unwrap().is_ipv4() { 4 } else { 6 } )), Ok(Async::NotReady) => Ok(Async::NotReady), Err(err) => Err(err), } } } fn local_ipv4_addr() -> IpAddr { Ipv4Addr::new(127, 0, 0, 1).into() } fn local_ipv6_addr() -> IpAddr { Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).into() } fn unreachable_ipv4_addr() -> IpAddr { Ipv4Addr::new(127, 0, 0, 2).into() } fn unreachable_ipv6_addr() -> IpAddr { Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 2).into() } fn slow_ipv4_addr() -> IpAddr { // RFC 6890 reserved IPv4 address. Ipv4Addr::new(198, 18, 0, 25).into() } fn slow_ipv6_addr() -> IpAddr { // RFC 6890 reserved IPv6 address. Ipv6Addr::new(2001, 2, 0, 0, 0, 0, 0, 254).into() } fn measure_connect(addr: IpAddr) -> (bool, Duration) { let start = Instant::now(); let result = ::std::net::TcpStream::connect_timeout( &(addr, 80).into(), Duration::from_secs(1)); let reachable = result.is_ok() || result.unwrap_err().kind() == io::ErrorKind::TimedOut; let duration = start.elapsed(); (reachable, duration) } } }