Files
h2/src/proto/streams/recv.rs
Carl Lerche c4fc2928fe API cleanup (#155)
* Change send_reset to take &mut self.

While calling this function is the last thing that should be done with
the instance, the intent of the h2 library is not to be used directly by
users, but to be used as an implementation detail by other libraries.

Requiring `self` on `send_reset` is pretty annoying when calling the
function from inside a `Future` implementation. Also, all the other fns
on the type take `&mut self`.

* Remove the P: Peer generic from internals

* Split out `Respond` from `server::Stream`

This new type is used to send HTTP responses to the client as well as
reserve streams for push promises.

* Remove unused `Send` helper.

This could be brought back later when the API becomes stable.

* Unite `client` and `server` types

* Remove `B` generic from internal proto structs

This is a first step in removing the `B` generic from public API types
that do not strictly require it.

Currently, all public API types must be generic over `B` even if they do
not actually interact with the send data frame type. The first step in
removing this is to remove `B` as a generic on all internal types.

* Remove `Buffer<B>` from inner stream state

This is the next step in removing the `B` generic from all public API
types. The send buffer is the only type that requires `B`. It has now
been extracted from the rest of the stream state.

The strategy used in this PR requires an additional `Arc` and `Mutex`,
but this is not a fundamental requirement. The additional overhead can
be avoided with a little bit of unsafe code. However, this optimization
should not be made until it is proven that it is required.

* Remove `B` generic from `Body` + `ReleaseCapacity`

This commit actually removes the generic from these two public API
types. Also note, that removing the generic requires that `B: 'static`.
This is because there is no more generic on `Body` and `ReleaseCapacity`
and the compiler must be able to ensure that `B` outlives all `Body` and
`ReleaseCapacity` handles.

In practice, in an async world, passing a non 'static `B` is never going
to happen.

* Remove generic from `ResponseFuture`

This change also makes generic free types `Send`. The original strategy
of using a trait object meant that those handles could not be `Send`.
The solution was to avoid using the send buffer when canceling a stream.
This is done by transitioning the stream state to `Canceled`, a new
`Cause` variant.

* Simplify Send::send_reset

Now that implicit cancelation goes through a separate path, the
send_reset function can be simplified.

* Export types common to client & server at root

* Rename Stream -> SendStream, Body -> RecvStream

* Implement send_reset on server::Respond
2017-10-19 20:02:08 -07:00

718 lines
21 KiB
Rust

use super::*;
use {frame, proto};
use codec::{RecvError, UserError};
use frame::{Reason, DEFAULT_INITIAL_WINDOW_SIZE};
use proto::*;
use http::HeaderMap;
use std::io;
#[derive(Debug)]
pub(super) struct Recv {
/// Initial window size of remote initiated streams
init_window_sz: WindowSize,
/// Connection level flow control governing received data
flow: FlowControl,
/// Amount of connection window capacity currently used by outstanding streams.
in_flight_data: WindowSize,
/// The lowest stream ID that is still idle
next_stream_id: Result<StreamId, StreamIdOverflow>,
/// The stream ID of the last processed stream
last_processed_id: StreamId,
/// Streams that have pending window updates
pending_window_updates: store::Queue<stream::NextWindowUpdate>,
/// New streams to be accepted
pending_accept: store::Queue<stream::NextAccept>,
/// Holds frames that are waiting to be read
buffer: Buffer<Event>,
/// Refused StreamId, this represents a frame that must be sent out.
refused: Option<StreamId>,
/// If push promises are allowed to be recevied.
is_push_enabled: bool,
}
#[derive(Debug)]
pub(super) enum Event {
Headers(peer::PollMessage),
Data(Bytes),
Trailers(HeaderMap),
}
#[derive(Debug, Clone, Copy)]
struct Indices {
head: store::Key,
tail: store::Key,
}
impl Recv {
pub fn new(peer: peer::Dyn, config: &Config) -> Self {
let next_stream_id = if peer.is_server() { 1 } else { 2 };
let mut flow = FlowControl::new();
// connections always have the default window size, regardless of
// settings
flow.inc_window(DEFAULT_INITIAL_WINDOW_SIZE)
.expect("invalid initial remote window size");
flow.assign_capacity(DEFAULT_INITIAL_WINDOW_SIZE);
Recv {
init_window_sz: config.local_init_window_sz,
flow: flow,
in_flight_data: 0 as WindowSize,
next_stream_id: Ok(next_stream_id.into()),
pending_window_updates: store::Queue::new(),
last_processed_id: StreamId::zero(),
pending_accept: store::Queue::new(),
buffer: Buffer::new(),
refused: None,
is_push_enabled: config.local_push_enabled,
}
}
/// Returns the initial receive window size
pub fn init_window_sz(&self) -> WindowSize {
self.init_window_sz
}
/// Returns the ID of the last processed stream
pub fn last_processed_id(&self) -> StreamId {
self.last_processed_id
}
/// Update state reflecting a new, remotely opened stream
///
/// Returns the stream state if successful. `None` if refused
pub fn open(
&mut self,
id: StreamId,
counts: &mut Counts,
) -> Result<Option<StreamId>, RecvError> {
assert!(self.refused.is_none());
counts.peer().ensure_can_open(id)?;
let next_id = self.next_stream_id()?;
if id < next_id {
return Err(RecvError::Connection(Reason::PROTOCOL_ERROR));
}
self.next_stream_id = id.next_id();
if !counts.can_inc_num_recv_streams() {
self.refused = Some(id);
return Ok(None);
}
Ok(Some(id))
}
/// Transition the stream state based on receiving headers
///
/// The caller ensures that the frame represents headers and not trailers.
pub fn recv_headers(
&mut self,
frame: frame::Headers,
stream: &mut store::Ptr,
counts: &mut Counts,
) -> Result<(), RecvError> {
trace!("opening stream; init_window={}", self.init_window_sz);
let is_initial = stream.state.recv_open(frame.is_end_stream())?;
if is_initial {
// TODO: be smarter about this logic
if frame.stream_id() > self.last_processed_id {
self.last_processed_id = frame.stream_id();
}
// Increment the number of concurrent streams
counts.inc_num_recv_streams();
}
if !stream.content_length.is_head() {
use super::stream::ContentLength;
use http::header;
if let Some(content_length) = frame.fields().get(header::CONTENT_LENGTH) {
let content_length = match parse_u64(content_length.as_bytes()) {
Ok(v) => v,
Err(_) => {
return Err(RecvError::Stream {
id: stream.id,
reason: Reason::PROTOCOL_ERROR,
})
},
};
stream.content_length = ContentLength::Remaining(content_length);
}
}
let message = counts.peer().convert_poll_message(frame)?;
// Push the frame onto the stream's recv buffer
stream
.pending_recv
.push_back(&mut self.buffer, Event::Headers(message));
stream.notify_recv();
// Only servers can receive a headers frame that initiates the stream.
// This is verified in `Streams` before calling this function.
if counts.peer().is_server() {
self.pending_accept.push(stream);
}
Ok(())
}
/// Called by the server to get the request
///
/// TODO: Should this fn return `Result`?
pub fn take_request(&mut self, stream: &mut store::Ptr)
-> Request<()>
{
use super::peer::PollMessage::*;
match stream.pending_recv.pop_front(&mut self.buffer) {
Some(Event::Headers(Server(request))) => request,
_ => panic!(),
}
}
/// Called by the client to get the response
pub fn poll_response(
&mut self,
stream: &mut store::Ptr,
) -> Poll<Response<()>, proto::Error> {
use super::peer::PollMessage::*;
// If the buffer is not empty, then the first frame must be a HEADERS
// frame or the user violated the contract.
match stream.pending_recv.pop_front(&mut self.buffer) {
Some(Event::Headers(Client(response))) => Ok(response.into()),
Some(_) => panic!("poll_response called after response returned"),
None => {
stream.state.ensure_recv_open()?;
stream.recv_task = Some(task::current());
Ok(Async::NotReady)
},
}
}
/// Transition the stream based on receiving trailers
pub fn recv_trailers(
&mut self,
frame: frame::Headers,
stream: &mut store::Ptr,
) -> Result<(), RecvError> {
// Transition the state
stream.state.recv_close()?;
if stream.ensure_content_length_zero().is_err() {
return Err(RecvError::Stream {
id: stream.id,
reason: Reason::PROTOCOL_ERROR,
});
}
let trailers = frame.into_fields();
// Push the frame onto the stream's recv buffer
stream
.pending_recv
.push_back(&mut self.buffer, Event::Trailers(trailers));
stream.notify_recv();
Ok(())
}
/// Releases capacity back to the connection
pub fn release_capacity(
&mut self,
capacity: WindowSize,
stream: &mut store::Ptr,
task: &mut Option<Task>,
) -> Result<(), UserError> {
trace!("release_capacity; size={}", capacity);
if capacity > stream.in_flight_recv_data {
return Err(UserError::ReleaseCapacityTooBig);
}
// Decrement in-flight data
stream.in_flight_recv_data -= capacity;
self.in_flight_data -= capacity;
// Assign capacity to connection & stream
self.flow.assign_capacity(capacity);
stream.recv_flow.assign_capacity(capacity);
if self.flow.unclaimed_capacity().is_some() {
if let Some(task) = task.take() {
task.notify();
}
}
if stream.recv_flow.unclaimed_capacity().is_some() {
// Queue the stream for sending the WINDOW_UPDATE frame.
self.pending_window_updates.push(stream);
if let Some(task) = task.take() {
task.notify();
}
}
Ok(())
}
/// Set the "target" connection window size.
///
/// By default, all new connections start with 64kb of window size. As
/// streams used and release capacity, we will send WINDOW_UPDATEs for the
/// connection to bring it back up to the initial "target".
///
/// Setting a target means that we will try to tell the peer about
/// WINDOW_UPDATEs so the peer knows it has about `target` window to use
/// for the whole conection.
///
/// The `task` is an optional parked task for the `Connection` that might
/// be blocked on needing more window capacity.
pub fn set_target_connection_window(&mut self, target: WindowSize, task: &mut Option<Task>) {
trace!(
"set_target_connection_window; target={}; available={}, reserved={}",
target,
self.flow.available(),
self.in_flight_data,
);
// The current target connection window is our `available` plus any
// in-flight data reserved by streams.
//
// Update the flow controller with the difference between the new
// target and the current target.
let current = (self.flow.available() + self.in_flight_data).checked_size();
if target > current {
self.flow.assign_capacity(target - current);
} else {
self.flow.claim_capacity(current - target);
}
// If changing the target capacity means we gained a bunch of capacity,
// enough that we went over the update threshold, then schedule sending
// a connection WINDOW_UPDATE.
if self.flow.unclaimed_capacity().is_some() {
if let Some(task) = task.take() {
task.notify();
}
}
}
pub fn body_is_empty(&self, stream: &store::Ptr) -> bool {
if !stream.state.is_recv_closed() {
return false;
}
stream
.pending_recv
.peek_front(&self.buffer)
.map(|event| !event.is_data())
.unwrap_or(true)
}
pub fn recv_data(
&mut self,
frame: frame::Data,
stream: &mut store::Ptr,
) -> Result<(), RecvError> {
let sz = frame.payload().len();
// This should have been enforced at the codec::FramedRead layer, so
// this is just a sanity check.
assert!(sz <= MAX_WINDOW_SIZE as usize);
let sz = sz as WindowSize;
if !stream.state.is_recv_streaming() {
// Receiving a DATA frame when not expecting one is a protocol
// error.
return Err(RecvError::Connection(Reason::PROTOCOL_ERROR));
}
trace!(
"recv_data; size={}; connection={}; stream={}",
sz,
self.flow.window_size(),
stream.recv_flow.window_size()
);
// Ensure that there is enough capacity on the connection before acting
// on the stream.
if self.flow.window_size() < sz || stream.recv_flow.window_size() < sz {
return Err(RecvError::Connection(Reason::FLOW_CONTROL_ERROR));
}
// Update connection level flow control
self.flow.send_data(sz);
// Update stream level flow control
stream.recv_flow.send_data(sz);
// Track the data as in-flight
stream.in_flight_recv_data += sz;
self.in_flight_data += sz;
if stream.dec_content_length(frame.payload().len()).is_err() {
return Err(RecvError::Stream {
id: stream.id,
reason: Reason::PROTOCOL_ERROR,
});
}
if frame.is_end_stream() {
if stream.ensure_content_length_zero().is_err() {
return Err(RecvError::Stream {
id: stream.id,
reason: Reason::PROTOCOL_ERROR,
});
}
if stream.state.recv_close().is_err() {
return Err(RecvError::Connection(Reason::PROTOCOL_ERROR));
}
}
let event = Event::Data(frame.into_payload());
// Push the frame onto the recv buffer
stream.pending_recv.push_back(&mut self.buffer, event);
stream.notify_recv();
Ok(())
}
pub fn recv_push_promise(
&mut self,
frame: frame::PushPromise,
send: &Send,
stream: store::Key,
store: &mut Store,
) -> Result<(), RecvError> {
// First, make sure that the values are legit
self.ensure_can_reserve(frame.promised_id())?;
// Make sure that the stream state is valid
store[stream].state.ensure_recv_open()?;
// TODO: Streams in the reserved states do not count towards the concurrency
// limit. However, it seems like there should be a cap otherwise this
// could grow in memory indefinitely.
/*
if !self.inc_num_streams() {
self.refused = Some(frame.promised_id());
return Ok(());
}
*/
// TODO: All earlier stream IDs should be implicitly closed.
// Now, create a new entry for the stream
let mut new_stream = Stream::new(
frame.promised_id(),
send.init_window_sz(),
self.init_window_sz,
);
new_stream.state.reserve_remote()?;
let mut ppp = store[stream].pending_push_promises.take();
{
// Store the stream
let mut new_stream = store.insert(frame.promised_id(), new_stream);
ppp.push(&mut new_stream);
}
let stream = &mut store[stream];
stream.pending_push_promises = ppp;
stream.notify_recv();
Ok(())
}
/// Ensures that `id` is not in the `Idle` state.
pub fn ensure_not_idle(&self, id: StreamId) -> Result<(), Reason> {
if let Ok(next) = self.next_stream_id {
if id >= next {
return Err(Reason::PROTOCOL_ERROR);
}
}
// if next_stream_id is overflowed, that's ok.
Ok(())
}
pub fn recv_reset(
&mut self,
frame: frame::Reset,
stream: &mut Stream,
) -> Result<(), RecvError> {
let err = proto::Error::Proto(frame.reason());
// Notify the stream
stream.state.recv_err(&err);
stream.notify_recv();
Ok(())
}
/// Handle a received error
pub fn recv_err(&mut self, err: &proto::Error, stream: &mut Stream) {
// Receive an error
stream.state.recv_err(err);
// If a receiver is waiting, notify it
stream.notify_recv();
}
fn next_stream_id(&self) -> Result<StreamId, RecvError> {
if let Ok(id) = self.next_stream_id {
Ok(id)
} else {
Err(RecvError::Connection(Reason::PROTOCOL_ERROR))
}
}
/// Returns true if the remote peer can reserve a stream with the given ID.
fn ensure_can_reserve(&self, promised_id: StreamId)
-> Result<(), RecvError>
{
if !promised_id.is_server_initiated() {
trace!(
"recv_push_promise; error promised id is invalid {:?}",
promised_id
);
return Err(RecvError::Connection(Reason::PROTOCOL_ERROR));
}
if !self.is_push_enabled {
trace!("recv_push_promise; error push is disabled");
return Err(RecvError::Connection(Reason::PROTOCOL_ERROR));
}
Ok(())
}
/// Send any pending refusals.
pub fn send_pending_refusal<T, B>(
&mut self,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<(), io::Error>
where
T: AsyncWrite,
B: Buf,
{
if let Some(stream_id) = self.refused {
try_ready!(dst.poll_ready());
// Create the RST_STREAM frame
let frame = frame::Reset::new(stream_id, Reason::REFUSED_STREAM);
// Buffer the frame
dst.buffer(frame.into())
.ok()
.expect("invalid RST_STREAM frame");
}
self.refused = None;
Ok(Async::Ready(()))
}
pub fn poll_complete<T, B>(
&mut self,
store: &mut Store,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<(), io::Error>
where
T: AsyncWrite,
B: Buf,
{
// Send any pending connection level window updates
try_ready!(self.send_connection_window_update(dst));
// Send any pending stream level window updates
try_ready!(self.send_stream_window_updates(store, dst));
Ok(().into())
}
/// Send connection level window update
fn send_connection_window_update<T, B>(
&mut self,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<(), io::Error>
where
T: AsyncWrite,
B: Buf,
{
if let Some(incr) = self.flow.unclaimed_capacity() {
let frame = frame::WindowUpdate::new(StreamId::zero(), incr);
// Ensure the codec has capacity
try_ready!(dst.poll_ready());
// Buffer the WINDOW_UPDATE frame
dst.buffer(frame.into())
.ok()
.expect("invalid WINDOW_UPDATE frame");
// Update flow control
self.flow
.inc_window(incr)
.ok()
.expect("unexpected flow control state");
}
Ok(().into())
}
/// Send stream level window update
pub fn send_stream_window_updates<T, B>(
&mut self,
store: &mut Store,
dst: &mut Codec<T, Prioritized<B>>,
) -> Poll<(), io::Error>
where
T: AsyncWrite,
B: Buf,
{
loop {
// Ensure the codec has capacity
try_ready!(dst.poll_ready());
// Get the next stream
let mut stream = match self.pending_window_updates.pop(store) {
Some(stream) => stream,
None => return Ok(().into()),
};
if !stream.state.is_recv_streaming() {
// No need to send window updates on the stream if the stream is
// no longer receiving data.
continue;
}
// TODO: de-dup
if let Some(incr) = stream.recv_flow.unclaimed_capacity() {
// Create the WINDOW_UPDATE frame
let frame = frame::WindowUpdate::new(stream.id, incr);
// Buffer it
dst.buffer(frame.into())
.ok()
.expect("invalid WINDOW_UPDATE frame");
// Update flow control
stream
.recv_flow
.inc_window(incr)
.ok()
.expect("unexpected flow control state");
}
}
}
pub fn next_incoming(&mut self, store: &mut Store) -> Option<store::Key> {
self.pending_accept.pop(store).map(|ptr| ptr.key())
}
pub fn poll_data(&mut self, stream: &mut Stream) -> Poll<Option<Bytes>, proto::Error> {
// TODO: Return error when the stream is reset
match stream.pending_recv.pop_front(&mut self.buffer) {
Some(Event::Data(payload)) => Ok(Some(payload).into()),
Some(event) => {
// Frame is trailer
stream.pending_recv.push_front(&mut self.buffer, event);
// No more data frames
Ok(None.into())
},
None => self.schedule_recv(stream),
}
}
pub fn poll_trailers(
&mut self,
stream: &mut Stream,
) -> Poll<Option<HeaderMap>, proto::Error> {
match stream.pending_recv.pop_front(&mut self.buffer) {
Some(Event::Trailers(trailers)) => Ok(Some(trailers).into()),
Some(_) => {
// TODO: This is a user error. `poll_trailers` was called before
// the entire set of data frames have been consumed. What should
// we do?
panic!("poll_trailers called before data has been consumed");
},
None => self.schedule_recv(stream),
}
}
fn schedule_recv<T>(&mut self, stream: &mut Stream) -> Poll<Option<T>, proto::Error> {
if stream.state.ensure_recv_open()? {
// Request to get notified once more frames arrive
stream.recv_task = Some(task::current());
Ok(Async::NotReady)
} else {
// No more frames will be received
Ok(None.into())
}
}
}
// ===== impl Event =====
impl Event {
fn is_data(&self) -> bool {
match *self {
Event::Data(..) => true,
_ => false,
}
}
}
// ===== util =====
fn parse_u64(src: &[u8]) -> Result<u64, ()> {
if src.len() > 19 {
// At danger for overflow...
return Err(());
}
let mut ret = 0;
for &d in src {
if d < b'0' || d > b'9' {
return Err(());
}
ret *= 10;
ret += (d - b'0') as u64;
}
Ok(ret)
}