Refactor errors (#46)

This patch does a bunch of refactoring, mostly around error types, but it also
paves the way to allow `Codec` to be used standalone.

* `Codec` (and `FramedRead` / `FramedWrite`) is broken out into a codec module.
* An h2-codec crate is created that re-exports the frame and codec modules.
* New error types are introduced in the internals:
  * `RecvError` represents errors caused by trying to receive a frame.
  * `SendError` represents errors caused by trying to send a frame.
  * `UserError` is an enum of potential errors caused by invalid usage
    by the user of the lib.
  * `ProtoError` is either a `Reason` or an `io::Error`. However it doesn't
    specify connection or stream level.
  * `h2::Error` is an opaque error type and is the only error type exposed
    by the public API (used to be `ConnectionError`).

There are misc code changes to enable this as well. The biggest is a new "sink"
API for `Codec`. It provides buffer which queues up a frame followed by flush
which writes everything that is queued. This departs from the `Sink` trait in
order to provide more accurate error values. For example, buffer can never fail
(but it will panic if `poll_ready` is not called first).
This commit is contained in:
Carl Lerche
2017-09-02 11:12:50 -07:00
committed by GitHub
parent 6fd9674759
commit c122e97127
37 changed files with 1043 additions and 1027 deletions

260
src/codec/framed_write.rs Normal file
View File

@@ -0,0 +1,260 @@
use codec::UserError;
use codec::UserError::*;
use frame::{self, Frame, FrameSize};
use hpack;
use futures::*;
use tokio_io::{AsyncRead, AsyncWrite};
use bytes::{BytesMut, Buf, BufMut};
use std::io::{self, Cursor};
#[derive(Debug)]
pub struct FramedWrite<T, B> {
/// Upstream `AsyncWrite`
inner: T,
/// HPACK encoder
hpack: hpack::Encoder,
/// Write buffer
///
/// TODO: Should this be a ring buffer?
buf: Cursor<BytesMut>,
/// Next frame to encode
next: Option<Next<B>>,
/// Last data frame
last_data_frame: Option<frame::Data<B>>,
/// Max frame size, this is specified by the peer
max_frame_size: FrameSize,
}
#[derive(Debug)]
enum Next<B> {
Data(frame::Data<B>),
Continuation(frame::Continuation),
}
/// Initialze the connection with this amount of write buffer.
const DEFAULT_BUFFER_CAPACITY: usize = 4 * 1_024;
/// Min buffer required to attempt to write a frame
const MIN_BUFFER_CAPACITY: usize = frame::HEADER_LEN + CHAIN_THRESHOLD;
/// Chain payloads bigger than this. The remote will never advertise a max frame
/// size less than this (well, the spec says the max frame size can't be less
/// than 16kb, so not even close).
const CHAIN_THRESHOLD: usize = 256;
// TODO: Make generic
impl<T, B> FramedWrite<T, B>
where T: AsyncWrite,
B: Buf,
{
pub fn new(inner: T) -> FramedWrite<T, B> {
FramedWrite {
inner: inner,
hpack: hpack::Encoder::default(),
buf: Cursor::new(BytesMut::with_capacity(DEFAULT_BUFFER_CAPACITY)),
next: None,
last_data_frame: None,
max_frame_size: frame::DEFAULT_MAX_FRAME_SIZE,
}
}
/// Returns `Ready` when `send` is able to accept a frame
///
/// Calling this function may result in the current contents of the buffer
/// to be flushed to `T`.
pub fn poll_ready(&mut self) -> Poll<(), io::Error> {
if !self.has_capacity() {
// Try flushing
try!(self.flush());
if !self.has_capacity() {
return Ok(Async::NotReady);
}
}
Ok(Async::Ready(()))
}
/// Buffer a frame.
///
/// `poll_ready` must be called first to ensure that a frame may be
/// accepted.
pub fn buffer(&mut self, item: Frame<B>) -> Result<(), UserError> {
// Ensure that we have enough capacity to accept the write.
assert!(self.has_capacity());
debug!("send; frame={:?}", item);
match item {
Frame::Data(mut v) => {
// Ensure that the payload is not greater than the max frame.
let len = v.payload().remaining();
if len > self.max_frame_size() {
return Err(PayloadTooBig);
}
if len >= CHAIN_THRESHOLD {
let head = v.head();
// Encode the frame head to the buffer
head.encode(len, self.buf.get_mut());
// Save the data frame
self.next = Some(Next::Data(v));
} else {
v.encode_chunk(self.buf.get_mut());
// The chunk has been fully encoded, so there is no need to
// keep it around
assert_eq!(v.payload().remaining(), 0, "chunk not fully encoded");
// Save off the last frame...
self.last_data_frame = Some(v);
}
}
Frame::Headers(v) => {
if let Some(continuation) = v.encode(&mut self.hpack, self.buf.get_mut()) {
self.next = Some(Next::Continuation(continuation));
}
}
Frame::PushPromise(v) => {
debug!("unimplemented PUSH_PROMISE write; frame={:?}", v);
unimplemented!();
}
Frame::Settings(v) => {
v.encode(self.buf.get_mut());
trace!("encoded settings; rem={:?}", self.buf.remaining());
}
Frame::GoAway(v) => {
v.encode(self.buf.get_mut());
trace!("encoded go_away; rem={:?}", self.buf.remaining());
}
Frame::Ping(v) => {
v.encode(self.buf.get_mut());
trace!("encoded ping; rem={:?}", self.buf.remaining());
}
Frame::WindowUpdate(v) => {
v.encode(self.buf.get_mut());
trace!("encoded window_update; rem={:?}", self.buf.remaining());
}
Frame::Priority(_) => {
/*
v.encode(self.buf.get_mut());
trace!("encoded priority; rem={:?}", self.buf.remaining());
*/
unimplemented!();
}
Frame::Reset(v) => {
v.encode(self.buf.get_mut());
trace!("encoded reset; rem={:?}", self.buf.remaining());
}
}
Ok(())
}
/// Flush buffered data to the wire
pub fn flush(&mut self) -> Poll<(), io::Error> {
trace!("flush");
while !self.is_empty() {
match self.next {
Some(Next::Data(ref mut frame)) => {
let mut buf = Buf::by_ref(&mut self.buf).chain(frame.payload_mut());
try_ready!(self.inner.write_buf(&mut buf));
}
_ => {
try_ready!(self.inner.write_buf(&mut self.buf));
}
}
}
// The data frame has been written, so unset it
match self.next.take() {
Some(Next::Data(frame)) => {
self.last_data_frame = Some(frame);
}
Some(Next::Continuation(_)) => {
unimplemented!();
}
None => {}
}
trace!("flushing buffer");
// Flush the upstream
try_nb!(self.inner.flush());
// Clear internal buffer
self.buf.set_position(0);
self.buf.get_mut().clear();
Ok(Async::Ready(()))
}
/// Close the codec
pub fn shutdown(&mut self) -> Poll<(), io::Error> {
try_ready!(self.flush());
self.inner.shutdown().map_err(Into::into)
}
fn has_capacity(&self) -> bool {
self.next.is_none() && self.buf.get_ref().remaining_mut() >= MIN_BUFFER_CAPACITY
}
fn is_empty(&self) -> bool {
match self.next {
Some(Next::Data(ref frame)) => !frame.payload().has_remaining(),
_ => !self.buf.has_remaining(),
}
}
}
impl<T, B> FramedWrite<T, B> {
/// Returns the max frame size that can be sent
pub fn max_frame_size(&self) -> usize {
self.max_frame_size as usize
}
/// Apply settings received by the peer
pub fn apply_remote_settings(&mut self, settings: &frame::Settings) {
if let Some(val) = settings.max_frame_size() {
self.max_frame_size = val;
}
}
/// Retrieve the last data frame that has been sent
pub fn take_last_data_frame(&mut self) -> Option<frame::Data<B>> {
self.last_data_frame.take()
}
pub fn get_mut(&mut self) -> &mut T {
&mut self.inner
}
}
impl<T: io::Read, B> io::Read for FramedWrite<T, B> {
fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
self.inner.read(dst)
}
}
impl<T: AsyncRead, B> AsyncRead for FramedWrite<T, B> {
fn read_buf<B2: BufMut>(&mut self, buf: &mut B2) -> Poll<usize, io::Error>
where Self: Sized,
{
self.inner.read_buf(buf)
}
unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [u8]) -> bool {
self.inner.prepare_uninitialized_buffer(buf)
}
}